Langmuir
ACKNOWLEDGMENTS
Article
nanodiamond in Xenopus embryos. J. Mater. Chem. 2010, 20, 8064−
■
8
(
069.
Financial support from the Centre National de la Recherche
Scientifique (CNRS), the Universite Lille 1, and the Institut
Universitaire de France (IUF) is gratefully acknowledged.
Support from the European Union through an FP7-PEOPLE-
IRSES (No. 269009) is acknowledged as well as French Ministry
of Foreign Affairs for a doctoral fellowship for M.K.
18) Liu, K.-K.; Cheng, C.-L.; Chang, C. C.; Chao, J.-I. Biocompatible
and detectablecarboxylatednanodiamond onhuman cell. Nanotechnology
2007, 18, 325102−325112.
́
(19) Schrand, A. M.; Huang, H.; Carlson, C.; Schlager, J. J.; Osawa, E.;
Hussain, S. M.; Dai, L. Are diamond nanoparticles cytotoxic? J. Phys.
Chem. B 2007, 111, 2−7.
(
20) Yu, S.-J.; Kang, M.-W.; Chang, H.-C.; Chen, K.-M.; Yu, Y.-C.
Bright fluorescent nanodiamonds: no photobleaching and low
cytotoxicity. J. Am. Chem. Soc. 2005, 127, 17604−17605.
(21) Khanal, M.; Vausselin, T.; Barras, A.; Bande, O.; Turcheniuk, K.;
Benazza, M.; Zaitsev, V.; Teodurescu, C. M.; Boukherroub, R.;
Siriwardena, A.; Dubuisson, J.; Szunerits, S. Phenylboronic-Acid-
Modified Nanoparticles: Potential Antiviral Therapeutics. ACS Appl.
Mater. Interfaces 2013, 5, 12488−12498.
REFERENCES
■
(
1) Neves, V.; Heister, E.; Costa, S.; Tilmaciu, C.; Flahaut, E.; Soula, B.;
Coley, H. M.; McFadden, J.; Silva, S. R. P. Design of double-walled
carbon nanotubes for biomedical applications. Nanotechnology 2012, 23,
65102−365110.
2) Feng, L. Z.; Zhang, S.; Liu, Z. Graphene based gene transfection.
Nanoscale 2011, 3, 1252−1257.
3) Pantarotto, D.; Singh, R.; McCarthy, D.; Erhardt, M.; Briand, J.-P.;
Prato, M.; Kostarelos, K.; Bianco, A. Functionalized Carbon Nanotubes
for Plasmid DNA Gene Delivery. Angew. Chem., Int. Ed. 2004, 43, 5242−
246.
4) Chen, M.; Zhang, X.-Q.; Man, H. B.; Lam, R.; Chow, E. K.; Ho, D.
Nanodiamond Vectors Functionalized with Polyethylenimine for
siRNA Delivery. J. Phys. Chem. Lett. 2010, 1, 3167−3171.
5) Zhang, X.-Q.; Chen, M.; Lam, R.; Xu, X.; Osawa, E.; Ho, D.
Polymer-Functionalized Nanodiamond Platforms as Vehicles for Gene
Delivery. ACS Nano 2009, 3 (9), 2609−2616.
6) Conde, J.; Ambrosone, A.; Sanz, V.; Hernandez, Y.; Marchesano,
V.; Tian, F.; Child, H.; Berry, C. C.; Ibarra, M. R.; Baptista, P. V.;
Toriglione, C.; de la Fuente, J. M. Design of Multifunctional Gold
Nanoparticles for In Vitro and In Vivo Gene Silencing. ACS Nano 2012,
3
(
(22) Wehling, J.; Dringer, R.; Zare, R. N.; Maas, M.; Rezwan, K.
Bactericidal Activity of Partially Oxidized Nanodiamonds. ACS Nano
2014, 8, 6475−6483.
(
(23) Martin, R.; Alvaro, M.; Herance, J. R.; Garcia, H. Fenton- Treated
Functionalized Diamond Nanoparticles as Gene Delivery System. ACS
Nano 2010, 4, 65−74.
(24) Meinhardt, T.; Lang, D.; Dill, H.; Krueger, A. Pushing the
Functionality of Diamond Nanoparticles to New Horizons: Orthogo-
nally Functionalized Nanodiamond Using Click Chemistry. Adv. Funct.
Mater. 2011, 21, 494−500.
(25) Slegerova, J.; Hajek, M.; Rehor, I.; Sedlak, F.; Stursa, J.; Hruby, M.;
Cigler, P. Designing the nanobiointerface of fluorescent nanodiamonds:
highly selective targeting of glioma cancer cells. Nanoscale 2015, 7, 415.
(26) Zhao, L.; Xu, Y.-H.; Qin, H.; Abe, S.; Akasaka, T.; Chano, T.;
Watari, F.; Kimura, T.; Komatsu, N.; Chen, X. Platinum on
Nanodiamond: A Promising Prodrug Conjugated with Stealth
Polyglycerol, Targeting Peptide and Acid-Responsive Antitumor
Drug. Adv. Funct. Mater. 2014, 24, 5348.
(27) Rehor, I.; Slegerova, J.; Kucka, J.; Proks, V.; Petrakova, V.; Adam,
M.-P.; Treussart, F.; Turner, S.; Bals, S.; Sacha, P.; Ledvina, M.; Wen, A.
M.; Steinmetz, N. F.; Cigler, P. Fluorescent Nanodiamonds Embedded
in Biocompatible Translucent Shells. Small 2014, 10, 1106.
(28) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B.
A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed
Regioselective “Ligation” of Azides and Terminal Alkynes. Angew. Chem.,
Int. Ed. 2002, 41, 2596−2599.
(29) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Click Chemistry:
Diverse Chemical Function from a Few Good Reactions. Angew. Chem.,
Int. Ed. 2001, 40, 2004−2021.
(30) Romanova, E. E.; Akiel, R.; Cho, F. H.; Takahashi, S. Grafting
nitroxide radicals on nanodiamond surface using click chemistry. J. Phys.
Chem. A 2013, 117, 11933.
5
(
(
(
6
(
, 8316−8324.
7) Das, M.; Bandyopadhyay, D.; Mishra, D.; Datir, S.; Dhak, P.; Jain,
S.; Kumar Maiti, T.; Basak, A.; Pramanik, P. “Clickable”, Trifunctional
Magnetite Nanoparticles and Their Chemoselective Biofunctionaliza-
tion. Bioconjugate Chem. 2011, 22, 1181−1193.
(
8) Mazur, M.; Barras, A.; Kuncser, V.; Galatanu, A.; Zaitzev, V.;
Turcheniuk, K. V.; Woisel, P.; Lyskawa, J.; Laure, W.; Siriwardena, A.;
Boukherroub, R.; Szunerits, S. Iron oxide magnetic nanoparticles with
versatile surface functions based on dopamine anchors. Nanoscale 2013,
, 2692−2702.
9) Mochalin, V. N.; Shenderova, O. A.; Ho, D.; Gogotsi, Y. The
properties and applications of nanodiamonds. Nat. Nanotechnol. 2012, 7,
1−23.
10) Barras, A.; Lyskawa, J.; Szunerits, S.; Woisel, P.; Boukherroub, R.
5
(
1
(
Direct functionalization of nanodiamond particles using dopamine
derivatives. Langmuir 2011, 27, 12451−12457.
11) Barras, A.; Szunerits, S.; Marcon, L.; Monfilliette-Dupont, N.;
(
Boukherroub, R. Functionalization of diamond nanoparticles using
click” chemistry. Langmuir 2010, 26 (16), 13168−13172.
12) Kruger, A. Hard and soft: biofunctinalized diamond. Angew.
Chem., Int. Ed. 2006, 45, 6426−6427.
13) Kruger, A. New Carbon Materials: Biological Applications of
Functionalized Nanodiamond Materials. Chem.Eur. J. 2008, 14,
382−1390.
14) Hartmann, M.; Betz, P.; Sun, Y.; N, G. S.; Lindhorst, T. K.;
̈
(31) Dordelmann, G.; Meinhardt, T.; Sowik, T.; Krueger, A.;
“
Schatzschneider, U. CuAAC click functionalization of azide-modified
nanodiamond with a photoactivatable CO-releasing molecule (Photo-
CORM) based on [Mn(CO)3(tpm)]. Chem. Commun. 2012, 48,
11528−11530.
(
̈
(
̈
(32) Khanal, M.; Larsonneur, F.; Raks, V.; Barras, A.; Baumann, J.-S.;
Ariel Martin, F.; Boukherroub, R.; Ghigo, J.-M.; Ortiz Mettet, C.;
Zaitsev, V.; Garcia Fernances, J. M.; Beloin, C.; Siriwardena, A.;
Szunerits, S. Inhibition of type 1 fimbriae-mediated Escherichia coli
adhesion and biofilm formation by trimeric cluster thiomannosides
conjugated to diamond nanoparticles. Nanoscale 2015, 7, 2325−2335.
(33) Wang, Y.; Xiao, Y.; Thatt Yang Tan, T.; Ng, S.-C. Click chemistry
for facile immobilization of cyclodextrin derivatives onto silica as chiral
stationary phases. Tetrahedron Lett. 2008, 49, 5190−5191.
(34) Chen, L.; Chen, T.; Fang, W.; Wen, Y.; Lin, S.; Lin, J.; Cai, C.
Synthesis and pH-responsive “schizophrenic” aggregation of a linear-
dendron-like polyampholyte based on oppositely charged polypeptides.
Biomacromolecules 2013, 14, 4320−4330.
1
(
Krueger, A. Saccharide-Modified Nanodiamond Conjugates for the
Efficient Detection and Removal of Pathogenic Bacteria. Chem.Eur. J.
2
(
012, 18, 6485−6492.
15) Barras, A.; Martin, F. A.; Bande, O.; Baumann, J. S.; Ghigo, J.-M.;
Boukherroub, R.; Beloin, C.; Siriwardena, A.; Szunerits, S. Glycan-
functionalized diamond nanoparticles as potent E. coli anti-adhesives.
Nanoscale 2013, 5, 2307−2316.
(
16) Rehor, I.; Mackova, H.; Filippov, S. K.; Kucka, J.; Proks, V.;
Slegerova, J.; Turner, S.; Van Tendeloo, G.; Ledvina, M.; Hruby, M.;
Cigler, P. Fluorescent Nanodiamonds with Bioorthogonally Reactive
Protein-Resistant Polymeric Coatings. ChemPlusChem 2014, 79, 21−24.
(35) Hong, R.; Fischer, N. O.; Emrick, T.; Rotello, V. M. Surface
PEGylation and Ligand Exchange Chemistry of FePt Nanoparticles for
Biological Applications. Chem. Mater. 2005, 4617−4621.
(
17) Marcon, L.; Riquet, F.; Vicogne, D.; Szunerits, S.; Bodart, J.-F.;
Boukherroub, R. Cellular and in vivo toxicity of functionalized
G
Langmuir XXXX, XXX, XXX−XXX