Chemistry Letters 2002
775
þ
11
oxidation region above 0 V vs Ag /Ag. These data reveal that the
polymer is susceptible to reduction and inert to oxidation and
behaves as an n-type conductor. Isolation of Na-doped polymer
was not possible due to solubility of the polymer in THF, in which
the polymer complex. The Ru-complex forming reactivity of 5a
was considerably higher than that of unsubstituted PPhen.
Examples of metal complexes of ꢀ-conjugated polymer ligands
1
are still limited. H-NMR analysis revealed quantative complex
formation of the phen unit of 5a. The Ru complex showed a
broadened MLCT peak at 440 nm in CHCl3 due to the presence of
6
Na-doping is usually carried out. Non-doped polymers did not
show electrical conductivity.
XRD patterns of the polymers are shown in Figure 1. The
ꢀ
10
a wide ꢀ band in 5a and gave an electrochemical reduction
þ
peak at ꢂ2:1 V vs Ag /Ag.
References and Notes
1
a) H. Sugihara, L. P. Singh, K. Sayama, H. Arakawa, Md. K.
Nazeeruddin, and M. Gr a¨ tzel, Chem. Lett., 1998, 1005. b) M. R.
Robinson, M. B. O’Regan, and G. C. Bazan, Chem. Commum.,
2
000, 1645. c) I. E. Mark o´ , P. R. Giles, M. Tsukazaki, S. M.
Brown, and C. J. Urch, Science, 274, 2044 (1996). d) S. S. Stahl,
J. L. Thorman, R. C. Nelson, and M. A. Kozee, J. Am. Chem.
Soc., 123, 7188 (2001).
2
3
a) S. Saitoh and T. Yamamoto, Chem. Lett., 1995, 785. b) T.
Miyamae, N. Ueno, S. Hasegawa, Y. Saito, T. Yamamoto, and
K. Seki, J. Chem. Phys., 110, 2552 (1999).
1
2: H NMR (CDCl3, 400 MHz) ꢁ: 9.14 (d, 2.8 Hz, 2H), 8.61 (d,
2
4
.8 Hz, 2H). Anal. Found: C, 39.17; H, 1.10; N, 7.61; Br,
3.43%. Calcd for C12H4Br2N2O2: C, 38.49; H, 0.89; N, 7.49;
Br, 43.68%.
W. Paw and R. Eisenberg, Inorg. Chem., 36, 2287 (1997).
4a: H NMR (CDCl3, 400 MHz) ꢁ: 9.09 (d, 2.4 Hz, 2H), 8.68 (d,
Figure 1. Powder XRD patterns of (a) 5d,
(b) 5c, (c) 5b, (d) 5a and (e) PPhen.
4
5
1
2
(
.4 Hz, 2H), 4.23 (t, 7.2 Hz, 4H), 1.90 (quin., 7.2 Hz, 4H), 1.52
m, 4H), 0.98 (t, 7.2 Hz, 6H). Anal. Found: C, 51.78; H, 5.14; N,
peaks observed at a low angle region (e.g., the peak with
ꢀ
5.49; Br, 31.32%. Calcd for C22H26Br2N2O2: C, 51.68; H, 4.92;
N, 5.49; Br, 31.46%. 4b: H NMR ꢁ: 9.09 (d, 2.4 Hz, 2H), 8.68
d ¼ 18:3 A for5a) are related to a distance between polymermain
1
chains separated by the long alkoxy groups. The d value increases
with the length of the alkoxy group, and Figure 2 depicts plots of
(
1
d, 2.4 Hz, 2H), 4.23 (t, 7.2 Hz, 4H), 1.89 (quin., 7.2 Hz, 4H),
.53 (m, 4H), 1.45–1.25 (m, 16H), 0.90 (t, 7.2 Hz, 6H). Anal.
Found: C, 56.58; H, 6.44; N, 4.71; Br, 26.88%. Calcd for
1
C28H38Br2N2O2: C, 56.38; H, 6.31; N, 4.70; Br, 26.53%. 4c: H
NMR ꢁ: 9.09 (d, 2.4 Hz, 2H), 8.67 (d, 2.4 Hz, 2H), 4.23 (t,
7
(
.2 Hz, 4H), 1.89 (quin., 7.2 Hz, 4H), 1.53 (m, 4H), 1.45-1.20
m, 32H), 0.88 (t, 7.2 Hz, 6H). Anal. Found: C, 61.19; H, 7.70;
N, 3.96; Br, 22.62%. Calcd for C36H54Br2N2O2: C, 61.23; H,
1
7.85; N, 4.00; Br, 22.38%. 4d: H NMR ꢁ: 9.09 (d, 2.4 Hz, 2H),
8.67 (d, 2.4 Hz, 2H), 4.23 (t, 7.2 Hz, 4H), 1.89 (quin., 7.2 Hz,
4H), 1.54 (m, 4H), 1.45-1.20 (m, 48H), 0.88 (t, 7.2 Hz, 6H).
Anal. Found: C, 64.54; H, 8.62; N, 3.42; Br, 19.52%. Calcd for
C44H70Br2N2O2: C, 64.84; H, 9.01; N, 3.48; Br, 20.22%.
T. Yamamoto, T. Maruyama, Z.-H. Zhou, T. Ito, T. Fukuda, Y.
Yoneda, F. Begum, T. Ikeda, S. Sasaki, H. Takezoe, A. Fukuda,
and K. Kubota, J. Am. Chem. Soc., 116, 4832 (1994).
6
7
5a: Anal. Found: C, 70.35; H, 7.72; N, 7.56; Br, 0%. Calcd for
C22H26N2O2ꢃ1.3H2O: C, 70.68; H, 7.71; N, 7.49. 1,10-
Phenanthroline forms hydrated products, and PPhen was also
Figure 2. Plots of d value vs. number of
carbons in the alkyl chain.
2a
hydrated. 5b: Anal. Found: C, 74.29; H, 8.88; N, 6.51; Br,
0
.20%. Calcd for C28H38N2O2ꢃ0.8H2O: C, 74.90; H, 8.89; N,
the d value vs number of carbons in the alkyl chain. The plots give
ꢀ
a straight line with a slope of 1.43 A/carbon, which is larger than
ꢀ
the height of the CH2 group (1.25 A/carbon). Based on these
results, the polymer is considered to take an end-to-end packing
mode with a stacked ꢀ-conjugated main chain, similar to cases of
6.24. 5c: Anal. Found: C, 77.75; H, 9.71; N, 5.35; Br, 0%. Calcd
for C H N O ꢃ0.5H O: C, 77.79; H, 9.97; N, 5.04. 5d: Anal.
36 54
2
2
2
Found: C, 77.37; H, 10.13; N, 4.57; Br, 0.50%. Calcd for
C44H70N2O2ꢃH2O: C, 78.06; H, 10.72; N, 4.14.
8
T. Yamamoto, D. Komarudin, M. Arai, B.-L. Lee, H.
Suganuma, N. Asakawa, Y. Inoue, K. Kubota, S. Sasaki, T.
Fukuda, and H. Matsuda, J. Am. Chem. Soc., 120, 2047 (1998).
Y. Muramatsu and T. Yamamoto, Polymer, 40, 6607 (1999).
0 N. Hayashida and T. Yamamoto, Bull. Chem. Soc. Jpn., 72,
0
0
poly(3-alkylthiophene-2,5-diyl)s, poly(4,4 -dialkyl-2,2 -bithia-
0
zole-5,5 -diyl)s,
and
poly(5,8-dialkoxyanthraquinone-1,4-
9
1
8;9
diyl).
Reaction of 5a with RuCl2(bpy)2 in an aqueous solution gave
a water-soluble [Ru(bpy)2]2 -coordinated complex of 5a, similar
to the case of a reaction of poly(2,2 -bipyridine-5,5 -diyl) and
RuCl2(bpy)2. Addition of NH4PF6 gave a yellow precipitate of
1
1 Data from elemental analysis roughly agreed with a formation
153 (1999).
þ
1
0
0
of [C H N O ꢃRu(bpy) ꢃ2PF ꢃ(H O)] : C, 47.06; H, 4.14; N,
2
2
26
2
2
2
6
2
n
6;10
7.84; F, 21.27%. Found: C, 46.31; H, 3.93; N, 8.20; F, 20.61.