1012
Vol. 50, No. 7
process of determining at which stage in Baker’s synthesis of
febrifugine the isomerization occurs.
References
1) Koepfli J. B., Mead J. F., Brockman J. A., Jr., J. Am. Chem. Soc., 69,
1837 (1947).
2) Koepfli J. B., Mead J. F., Brockman J. A., Jr., J. Am. Chem. Soc., 71,
1048—1054 (1949).
3) Ablondi F., Gordon S., Morton J., II, Williams J. H., J. Org. Chem., 17,
14—18 (1952).
4) Hutchings B. L, Gordon S., Ablondi F., Wolf C. F., Williams J. H., J.
Org. Chem., 17, 19—34 (1952).
5) Koepfli J. B., Mead J. F., Brockman J. A., Jr., J. Am. Chem. Soc., 69,
1837 (1947).
6) Baker B. R., McEvoy F. J., Schaub R. E., Joseph J. P., Williams J. H., J.
Org. Chem., 18, 178—183 (1953).
7) Hill R. K., Edwards A. G., Chem. Ind., 1962, 858.
8) Baker B. R., Schaub R. E., McEvoy F. J., Williams J. H., J. Org.
Chem., 17, 132—140 (1952).
9) Baker B. R., McEvoy F. J., Schaub R. E., Joseph J. P., Williams J. H., J.
Org. Chem., 18, 153—177 (1953).
10) Baker B. R., McEvoy F. J., J. Org. Chem., 20, 136—142 (1955).
11) Barringer D. F., Jr., Berkelhammer G., Wayne R. S., J. Org. Chem., 38,
1937—1940 (1973).
Reagents and conditions: a, NaBH4, MeOH, 0 °C, 15 min; b,
H2SO4, THF, rt, 1 h, 52%; c, Oxone®, acetone, K2CO3, H2O, rt,
2 h, 76% (trans : cisϭ1 : 1); d, Ac2O, Et3N, DMAP, rt, 2 h, 88%; e,
CH2ϭC(OEt)OTMS, Sc(OTf)3, CH2Cl2, rt, 13 h, 62%; f, 10%
KOH, MeOH, H2O, rt, 1.5 h; g, EDC, DMAP, CH2Cl2, rt, 3 h, 62%
(trans : cisϭ41 : 58); h, H2, Pd(OH)2/C, acetone, rt, 18 h; i, Ph-
COCl, Et3N, CHCl3; rt, 1 h, 33% (trans-3)ϩ44% (cis-3).
12) Kobayashi S., Ueno M., Suzuki R., Ishitani H., Tetrahedron Lett., 40,
2175—2178 (1999).
Chart 2
13) Kobayashi S., Ueno M., Suzuki R., Ishitani H., Kim H.-S., Wataya Y.,
J. Org. Chem., 64, 6833—6841 (1999).
14) Murata K., Takeno F., Fushiya S., Oshima Y., J. Nat. Prod., 61, 729—
733 (1998).
Baker et al. is cis based on the spectrum data. However, the
difference in the melting points of 3 and cis-3 was large.
Consequently, we attempted to synthesis trans-3 (Chart 2).
Considering green chemistry, the key intermediate, piperi-
dine-2,3-diol (8), was prepared by our new method using oxi-
15) Takaya Y., Tasaka H., Chiba T., Uwai K., Tanitsu M., Kim H.-S.,
Wataya Y., Miura M., Takeshita M., Oshima Y., J. Med. Chem., 42,
3163—3166 (1999).
dation of 2,3-dehydropiperidine (7) with Oxone® instead of 16) Takeuchi Y., Tokuda S., Takagi T., Koike M., Abe H., Harayama T.,
Shibata Y., Kim H.-S., Wataya Y., Heterocycles, 51, 1869—1875
(1999).
osmium reagent. N-Cbz-protected piperidine lactone (5) was
prepared from 8 according to Kobayashi’s method.26,27) As
17) Takeuchi Y., Koike M., Azuma K., Nishioka H., Abe H., Kim H.-S.,
they discussed, the reaction of 9 with non-substituted ketene
Wataya Y., Harayama T., Chem. Pharm. Bull., 49, 721—725 (2001).
silyl acetal has low diastereoselectivity. Deprotection fol-
lowed by benzoylation of 5 afforded a separable mixture
(3 : 4) of trans-3 and cis-3.
18) Takeuchi Y., Abe H., Harayama T., Chem. Pharm. Bull., 47, 905—906
(1999).
19) Takeuchi Y., Hattori M., Abe H., Harayama T., Synthesis, 1999,
1814—1818.
20) Takeuchi Y., Azuma K., Takakura K., Abe H., Harayama T., Chem.
Commun., 2000, 1643—1644.
21) Taniguchi T., Ogasawara K., Org. Lett., 2, 3193—3195 (2000).
22) Takeuchi Y., Azuma K., Takakura K., Abe H., Kim H.-S., Wataya Y.,
Harayama T., Tetrahedron, 57, 1213—1218 (2001).
23) Ooi H., Urushibara A., Esumi T., Iwabuchi Y., Hatakeyama S., Org.
Lett., 3, 953—955 (2001).
24) Sugiura M., Kobayashi S., Org. Lett., 3, 477—480 (2001).
25) Sugiura M., Hagio H., Hirabayashi R., Kobayashi S., Synlett, 2001,
1225—1228.
26) Okitsu O., Suzuki R., Kobayashi S., J. Org. Chem., 66, 809—823
(2001).
27) Okitsu O., Suzuki R., Kobayashi S., Synlett, 2000, 989—990.
28) Burgess L. E., Gross E. K. M., Jurka J., Tetrahedron Lett., 37, 3255—
3258 (1996).
The melting point and 1H-NMR data of 3 reported by Bar-
ringer et al., cis-3, and trans-3 are summarized in Table 2. It
is clear that 3 is cis-3, since the difference in the melting
points of 3 and trans-3 was larger than that between 3 and
cis-3. Moreover, Burgess et al., who reported another method
of synthesizing febrifugine in 1996, used Barringer’s result to
determine the syn or anti configuration of a derivative of 4
prepared by the reaction of piperidine oxide with allyl
silane.28) This result should also be corrected.
Now, we know that the configuration of substituents on the
piperidine ring in febrifugine is trans, without a doubt.
Therefore, our result suggests that the isomerization of the
cis-form to the trans-form occurs in the synthetic stage after
3 in Baker’s synthesis of febrifugine. We are now in the