Page 11 of 12
Journal of the American Chemical Society
(
20) Liang, Y.; Zhang, X.; MacMillan, D. W. C. Decarboxy- (32) Bour, J. R.; Camasso, N. M.; Sanford, M. S. Oxidation
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
lative Sp 3 C–N Coupling via Dual Copper and Photo-
redox Catalysis. Nature 2018, 559 (7712), 83–88.
https://doi.org/10.1038/s41586-018-0234-8.
of Ni(II) to Ni(IV) with Aryl Electrophiles Enables Ni-
Mediated Aryl–CF3 Coupling. J. Am. Chem. Soc.
2015,
137
(25),
8034–8037.
(
21) Le, C.; Chen, T. Q.; Liang, T.; Zhang, P.; MacMillan, D.
W. C. A Radical Approach to the Copper Oxidative
Addition Problem: Trifluoromethylation of Bro-
moarenes. Science 2018, 360 (6392), 1010–1014.
https://doi.org/10.1126/science.aat4133.
22) Kim, S.; Toste, F. D. Mechanism of Photoredox-Initiated
C–C and C–N Bond Formation by Arylation of
IPrAu(I)–CF3 and IPrAu(I)–Succinimide. J. Am.
Chem. Soc. 2019, 141 (10), 4308–4315.
https://doi.org/10.1021/jacs.8b11273.
https://doi.org/10.1021/jacs.5b04892.
(33) Koo, K.; Hillhouse, G. L. Carbon-Nitrogen Bond For-
mation by Reductive Elimination from Nickel(II) Am-
ido Alkyl Complexes. Organometallics 1995, 14 (9),
4421–4423. https://doi.org/10.1021/om00009a054.
(34) Cloutier, J.-P.; Zargarian, D. Functionalization of the
Aryl Moiety in the Pincer Complex (NCN)NiIIIBr2:
Insights on NiIII-Promoted Carbon–Heteroatom Cou-
pling. Organometallics 2018, 37 (9), 1446–1455.
https://doi.org/10.1021/acs.organomet.8b00103.
(
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
(23) Corcoran, E. B.; Pirnot, M. T.; Lin, S.; Dreher, S. D.; Di-
Rocco, D. A.; Davies, I. W.; Buchwald, S. L.; MacMil-
lan, D. W. C. Aryl Amination Using Ligand-Free Ni(II)
Salts and Photoredox Catalysis. Science 2016, 353
(35) Lavoie, C. M.; Stradiotto, M. Bisphosphines: A Promi-
nent Ancillary Ligand Class for Application in Nickel-
Catalyzed C–N Cross-Coupling. ACS Catal. 2018, 8
(8),
7228–7250.
(
6296),
279–283.
https://doi.org/10.1021/acscatal.8b01879.
ence.aag0209.
(36) Beattie, D. D.; Lascoumettes, G.; Kennepohl, P.; Love,
J. A.; Schafer, L. L. Disproportionation Reactions of an
Organometallic Ni(I) Amidate Complex: Scope and
Mechanistic Investigations. Organometallics 2018, 37
(9), 1392–1399. https://doi.org/10.1021/acs.organ-
omet.8b00074.
(37) Hansch, Corwin.; Leo, A.; Taft, R. W. A Survey of Ham-
mett Substituent Constants and Resonance and Field
Parameters. Chem. Rev. 1991, 91 (2), 165–195.
https://doi.org/10.1021/cr00002a004.
(38) Tsou, T. T.; Kochi, J. K. Mechanism of Oxidative Addi-
tion. Reaction of Nickel(0) Complexes with Aromatic
Halides. J. Am. Chem. Soc. 1979, 101 (21), 6319–6332.
https://doi.org/10.1021/ja00515a028.
(39) Shekhar, S.; Ryberg, P.; Hartwig, J. F.; Mathew, J. S.;
Blackmond, D. G.; Strieter, E. R.; Buchwald, S. L.
Reevaluation of the Mechanism of the Amination of
Aryl Halides Catalyzed by BINAP-Ligated Palladium
Complexes. J. Am. Chem. Soc. 2006, 128 (11), 3584–
3591. https://doi.org/10.1021/ja045533c.
(40) Ge, S.; Green, R. A.; Hartwig, J. F. Controlling First-
Row Catalysts: Amination of Aryl and Heteroaryl
Chlorides and Bromides with Primary Aliphatic
Amines Catalyzed by a BINAP-Ligated Single-Com-
ponent Ni(0) Complex. J. Am. Chem. Soc. 2014, 136
(4), 1617–1627. https://doi.org/10.1021/ja411911s.
(41) Sun, R.; Qin, Y.; Nocera, D. G. General Paradigm in
Photoredox Nickel-Catalyzed Cross-Coupling Allows
for Light-Free Access to Reactivity. Angewandte
Chemie International Edition 2020, 59 (24), 9527–
9533. https://doi.org/10.1002/anie.201916398.
(42) Kutchukian, P. S.; Dropinski, J. F.; Dykstra, K. D.; Li,
B.; DiRocco, D. A.; Streckfuss, E. C.; Campeau, L.-C.;
Cernak, T.; Vachal, P.; Davies, I. W.; Krska, S. W.;
Dreher, S. D. Chemistry Informer Libraries: A
Chemoinformatics Enabled Approach to Evaluate and
Advance Synthetic Methods. Chem. Sci. 2016, 7 (4),
2604–2613. https://doi.org/10.1039/C5SC04751J.
(43) Gisbertz, S.; Reischauer, S.; Pieber, B. Overcoming Lim-
itations in Dual Photoredox/Nickel-Catalysed C–N
Cross-Couplings Due to Catalyst Deactivation. Nature
Catalysis 2020, 1–10. https://doi.org/10.1038/s41929-
020-0473-6.
(
24) Corcoran, E. B.; McMullen, J. P.; Lévesque, F.; Wismer,
M. K.; Naber, J. R. Photon Equivalents as a Parameter
for Scaling Photoredox Reactions in Flow: Translation
of Photocatalytic C−N Cross-Coupling from Lab Scale
to Multikilogram Scale. Angewandte Chemie Interna-
tional Edition 2020, 59 (29), 11964–11968.
https://doi.org/10.1002/anie.201915412.
25) Lowry, M. S.; Goldsmith, J. I.; Slinker, J. D.; Rohl, R.;
Pascal, R. A.; Malliaras, G. G.; Bernhard, S. Single-
Layer Electroluminescent Devices and Photoinduced
Hydrogen Production from an Ionic Iridium(III) Com-
plex. Chem. Mater. 2005, 17 (23), 5712–5719.
https://doi.org/10.1021/cm051312+.
26) Arias-Rotondo, D. M.; McCusker, J. K. The Photophys-
ics of Photoredox Catalysis: A Roadmap for Catalyst
Design. Chem. Soc. Rev. 2016, 45 (21), 5803–5820.
https://doi.org/10.1039/C6CS00526H.
(27) Tian, L.; Till, N. A.; Kudisch, B.; MacMillan, D. W. C.;
Scholes, G. D. Transient Absorption Spectroscopy Of-
fers Mechanistic Insights for an Iridium/Nickel-Cata-
lyzed C–O Coupling. J. Am. Chem. Soc. 2020, 142
(
(
(
10),
4555–4559.
https://doi.org/10.1021/jacs.9b12835.
(
28) Kudisch, M.; Lim, C.-H.; Thordarson, P.; Miyake, G. M.
Energy Transfer to Ni-Amine Complexes in Dual Cat-
alytic, Light-Driven C–N Cross-Coupling Reactions. J.
Am. Chem. Soc. 2019, 141 (49), 19479–19486.
https://doi.org/10.1021/jacs.9b11049.
(29) Sun, R.; Qin, Y.; Ruccolo, S.; Schnedermann, C.;
Costentin, C.; Daniel G. Nocera. Elucidation of a Re-
dox-Mediated Reaction Cycle for Nickel-Catalyzed
Cross Coupling. J. Am. Chem. Soc. 2019, 141 (1), 89–
9
3. https://doi.org/10.1021/jacs.8b11262.
(
30) Shields, B. J.; Kudisch, B.; Scholes, G. D.; Doyle, A. G.
Long-Lived Charge-Transfer States of Nickel(II) Aryl
Halide Complexes Facilitate Bimolecular Photoin-
duced Electron Transfer. J. Am. Chem. Soc. 2018, 140
(
8), 3035–3039. https://doi.org/10.1021/jacs.7b13281.
(
31) Balakrishnan, G.; Keszthelyi, T.; Wilbrandt, R.; Zwier,
J. M.; Brouwer, A. M.; Buma, W. J. The Radical Cation
and Lowest Rydberg States of 1,4-Diaza[2.2.2]Bicy-
clooctane (DABCO). J. Phys. Chem. A 2000, 104 (9),
1
834–1841. https://doi.org/10.1021/jp993052n.
ACS Paragon Plus Environment