Chem. Biodiversity 2019, 16, e1800579
technical assistance of K. Thoms, Department of [12] H. D. VanEtten, J. W. Mansfield, J. A. Bailey, E. E. Farmer,
‘
“
Two classes of plant antibiotics: phytoalexins versus
phytoanticipins”’, Plant Cell 1994, 6, 1191.
Chemistry and Saskatchewan Sciences Structural
Centre, in HR-ESI-MS determinations.
[
[
13] M. S. C. Pedras, E. E. Yaya, ‘Plant chemical defenses: are all
constitutive antimicrobial metabolites phytoanticipins?’,
Nat. Prod. Commun. 2015, 10, 209–218.
14] M. S. C. Pedras, Q. H. To, ‘Interrogation of biosynthetic
pathways of the cruciferous phytoalexins nasturlexins with
isotopically labelled compounds’, Org. Biomol. Chem. 2018,
Author Contribution Statement
M. S. C. Pedras designed and supervised this study
and wrote and revised the manuscript. A. Abdoli
synthesized indirubin, carried out the antifungal assays
with indirubin and tryptanthrin and performed all
statistical analyses. Q. H. To carried out all elicitation
and isotope-feeding experiments, isolated, identified
and characterized all plant metabolites (1–5), pre-
pared dideuterated anthranilic acid and carried out
the antifungal assays with N-formylanthranilic acid. C.
Thapa analyzed, purified and spectroscopically charac-
terized dideuterated anthranilic acid. All authors read
and reviewed the manuscript.
1
6, 3625–3638.
[
[
15] M. S. C. Pedras, E. E. Yaya, ‘Tenualexin, Other Phytoalexins
and Indole Glucosinolates from Wild Cruciferous Species’,
Chem. Biodiversity 2014, 11, 910–918.
16] M. S. C. Pedras, Q. H. To, ‘The first non-indolyl cruciferous
phytoalexins: Nasturlexins and tridentatols, a striking
convergent evolution of defenses in terrestrial plants and
marine animals?’, Phytochemistry 2015, 113, 57–63.
17] M. S. C. Pedras, M. Alavi, Q. H. To, ‘Expanding the nasturlex-
in family: nasturlexins C and D and their sulfoxides are
phytoalexins from the crucifers Barbarea vulgaris and B.
verna’, Phytochemistry 2015, 118, 131–138.
[18] M. S. C. Pedras, Q. H. To, ‘Unveiling the first indole-fused
thiazepine: structure, synthesis and biosynthesis of cyclo-
nasturlexin, a remarkable cruciferous phytoalexin’, Chem.
Commun. 2016, 52, 5880–5883.
19] M. S. C. Pedras, A. M. Adio, M. Suchy, D. P. O. Okinyo, Q.-A.
Zheng, M. Jha, M. G. Sarwar, ‘Detection, characterization
and identification of crucifer phytoalexins using high-
performance liquid chromatography with diode array
detection and electrospray ionization mass spectrometry’,
J. Chromatogr. A 2006, 1133, 172–183.
[20] X. Li, H. Huang, C. Yu, Y. Zhang, H. Li, W. Wang, ‘Synthesis
of tryptanthrins by organocatalytic and substrate co-
catalyzed photochemical condensation of indoles and
[
References
[
[
1] I. A. Al-Shehbaz, M. A. Beilstein, E. A. Kellogg, ‘Systematics
and phylogeny of the Brassicaceae (Cruciferae): an over-
view’, Plant Syst. Evol. 2006, 259, 89–120.
[
2] L. Yang, G. Wang, M. Wang, H. Jiang, L. Chen, F. Zhao, F.
Qiu, ‘Indole alkaloids from the roots of Isatis indigotica and
their inhibitory effects on nitric oxide production’, Fitoter-
apia 2014, 95, 175–181.
[
3] S.-F. Liu, Y.-Y. Zhang, L. Zhou, B. Lin, X.-X. Huang, X.-B.
Wang, S.-J. Song, ‘Alkaloids with neuroprotective effects
from the leaves of Isatis indigotica collected in the Anhui
Province, China’, Phytochemistry 2018, 149, 132–139.
4] T. Mohn, I. Plitzko, M. Hamburger, ‘A comprehensive
metabolite profiling of Isatis tinctoria leaf extracts’, Phyto-
chemistry 2009, 70, 924–934.
anthranilic acids with visible light and O ’, Org. Lett. 2016,
18, 5744–5747.
2
[21] J. Adachi, Y. Mori, S. Matsui, H. Takigami, J. Fujino, H.
Kitagawa, C. A. Miller, T. Kato, K. Saeki, T. Matsuda,
‘Indirubin and indigo are potent aryl hydrocarbon receptor
ligands present in human urine’, J. Biol. Chem. 2001, 276,
31475–31478.
[22] M. I. Ansari, M. K. Hussain, N. Yadav, P. K. Gupta, K. Hajela,
‘Silica supported perchloric acid catalyzed rapid N-formyla-
tion under solvent-free conditions’, Tetrahedron Lett. 2012,
53, 2063–2065.
[23] C. Oberthür, B. Schneider, H. Graf, M. Hamburger, ‘The
Elusive Indigo Precursors in Woad (Isatis tinctoria L.) –
Identification of the Major Indigo Precursor, Isatan A, and a
Structure Revision of Isatan B’, Chem. Biodiversity 2004, 1,
174–182.
[24] Y. Ichimaru, T. Fujii, H. Saito, M. Sano, T. Uchiyama, S.
Miyairi, ‘5-Bromoindirubin 3’-(O-oxiran-2-ylmethyl)oxime: A
long-acting anticancer agent and a suicide inhibitor for
epoxide hydrolase’, Bioorg. Med. Chem. 2017, 25, 4665–
4676.
[
[
5] K. Ponnusamy, C. Petchiammal, R. Mohankumar, W.
Hopper, ‘In vitro antifungal activity of indirubin isolated
from
a South Indian ethnomedicinal plant Wrightia
tinctoria R. Br.’, J. Ethnopharmacol. 2010, 132, 349–354.
6] R. Kaur, S. K. Manjal, R. K. Rawal, K. Kumar, ‘Recent synthetic
and medicinal perspectives of tryptanthrin’, Bioorg. Med.
Chem. 2017, 25, 4533–4552.
[
[
7] Y. Jahng, ‘Progress in the studies on tryptanthrin, an
alkaloid of history’, Arch. Pharm. Res. 2013, 36, 517–535.
8] M. Hamburger, ‘Isatis tinctoria – from the rediscovery of an
ancient medicinal plant towards a novel anti-inflammatory
phytopharmaceutical’, Phytochem. Rev. 2002, 1, 333–344.
9] J. A. Bailey, J. W. Mansfield, ‘Phytoalexins’, Blackie and Son,
Glasgow, U. K., 1982, 334 pp.
[
[
[
[
10] J. Kuc, ‘Phytoalexins, stress metabolism, and disease
resistance in plants’, Annu. Rev. Phytopathol. 1995, 33,
[25] F. Schindler, H. Zähner, ‘Stoffwechselprodukte von Mikroor-
ganismen’, Arch. Microbiol. 1971, 79, 187–203.
[26] E. Fiedler, H.-P. Fiedler, A. Gerhard, W. Keller-Schierlein,
W. A. König, H. Zähner, ‘Metabolic products of micro-
organisms. 156. Synthesis and biosynthesis of substituted
275–297.
11] M. S. C. Pedras, E. E. Yaya, E. Glawischnig, ‘The phytoalexins
from cultivated and wild crucifers: chemistry and biology’,
Nat. Prod. Rep. 2011, 28, 1381–1405.
(10 of 11) e1800579
© 2019 Wiley-VHCA AG, Zurich, Switzerland