10.1002/chem.202101382
Chemistry - A European Journal
RESEARCH ARTICLE
[3]
[4]
[5]
C. Lenz, J. Wick, D. Braga, M. García-Altares, G. Lackner, C. Hertweck,
M. Gressler, D. Hoffmeister, Angew. Chem. Int. Ed. 2020, 59, 1450–
1454; Angew. Chem. 2020, 132, 1466–1470.
of other mono- or dimeric indolic mushroom natural products.
Indigo, indirubin and isatin (an indoline) were observed in the
confrontation zone of two mushroom species.[18] Modified and
extended indole systems, as found in the iminoquinone
mycenarubin D of the mushroom Mycena haematopus[19] or in
the β-carboline infractopicrin of Cortinarius infractus,[20] were
recognized as active against soil bacteria and conferring a highly
bitter taste on the producer which deters feeding predators,
H. Laatsch, in Yearbook of the European College for the Study of
Consciousness 1997 (Eds.: H.-C. Leuner, M. Schlichting), Verlag für
Wissenschaft und Bildung, Berlin, 1998, pp. 241–256.
a) H. Blaschko, W. G. Levine, Biochem. Pharmacol. 1960, 3, 168–169;
b) H. Blaschko, W. G. Levine, Brit. J. Pharmacol., 1960, 15, 625–633; c)
W. G. Levine, Nature, 1967, 215, 1292–1293.
[6]
[7]
a) C. Göltner, H. Laatsch, Liebigs Ann. Chem. 1991, 1085–1089; b) A.
Kral, H. Laatsch, Z. Naturforsch. B 2014, 48, 1401–1407.
J. Fricke, A. M. Sherwood, A. L. Halberstadt, R. B. Kargbo, D.
Hoffmeister, J. Nat. Prod. 2021, 84, 1403–1408.
respectively. In contrast, the ecological advantage for
production in Psilocybe mushrooms remains obscure. Given that
binds to neurotransmitter receptors with high affinity,
2
1
monomeric 1, formed from 2, may protect the mushroom from
mycophagous insects by interfering with their behaviour.[21] An
alternative hypothesis includes that 1 is produced from 2 to fulfill
an ecological function as an oligomeric „defense-on-
demand“ mixture.[2b] Its polyphenolic properties may generate
reactive oxygen species and mediate binding to and precipitation
of proteins. Therefore, the chromophoric psilocyl oligomers may
exert an immediate deleterious effect on feeding insects and may
represent the true ecologically relevant molecules for which 2 is
accumulated as their chemically stable precursor.
[8]
[9]
M. E. Speeter, W. C. Anthony, J. Am. Chem. Soc. 1954, 76, 6208–6210.
E. A. Perpète, D. Jacquemin, J. Mol. Struct. THEOCHEM 2009, 914,
100–105.
[10] a) M. Z. Wrona, G. Dryhurst, J. Org. Chem. 1987, 52, 2817–2825; b) M.
Z. Wrona, G. Dryhurst, J. Pharm. Sci. 1988, 77, 911–917.
[11] M. A. dos S. Ribeiro, C. M. B. Gomes, A. S. N. Formagio, Z. V. Pereira,
U. Z. Melo, E. A. Basso, W. F. da Costa, D. C. Baldoqui, M. H. Sarragiotto,
Tetrahedron Lett. 2016, 57, 1331–1334.
[12] a) W. Steglich, A. Thilmann, H. Besl, A. Bresinsky, Z. Naturforsch. 1977,
32c, 46–48; b) M. Gill, W. Steglich, Prog. Chem. Org. Nat. Prod., 1987,
51, 1–317.
[13] W. Steglich, W. Furtner, A. Prox, Z. Naturforsch. 1968, 23b, 1044–1050.
[14] a) J. Fricke, F. Blei, D. Hoffmeister, Angew. Chem. Intl. Ed. 2017, 56,
12352-12355; Angew. Chem. 2017, 129, 12524–12527; b) F. Blei, F.
Baldeweg, J. Fricke, D. Hoffmeister, Chem. Eur. J. 2018, 24, 10028-
10031.
Conclusion
The dimerization of 1 is a key step of the spectacular blueing
reaction of Psilocybe magic mushrooms. Due to its dynamic
progress and subsequent oligo-/polymerization, the nature of the
initial blue compound(s) had remained elusive. Experimental and
computational evidence derived from 1 as well as with methylated
derivatives as surrogates proved the quinoid chromophore of the
7,7’-coupled dimer of 1 to confer the blue color on injured
mushrooms. Our work sheds light on an iconic phenomenon that
has intrigued natural product chemists, and amateurs alike, for
decades.
[15] B. Guan, P. Wan, J. Chem. Soc. Chem. Commun. 1993, 409–410.
[16] M. Jonsson, J. Lind, G. Merényi, J. Phys. Chem. A 2002, 106, 4758–
4762.
[17] J. A. Beutler, A. H. Der Marderosian, J. Nat. Prod. 1981, 44, 422–431.
[18] K. Krause, E.-M. Jung, J. Lindner, I. Hardiman, J. Poetschner, S.
Madhavan, C. Matthäus, M. Kai, R. C. Menezes, J. Popp, A. Svatoš, E.
Kothe, PLoS One 2020, 15, e0232145.
[19] J. S. Lohmann, S. Wagner, M. von Nussbaum, A. Pulte, W. Steglich, P.
Spiteller, Chem. Eur. J. 2018, 24, 8609–8614.
[20] a) W. Steglich, L. Kopanski, M. Wolf, M. Moser, G. Tegtmeyer,
Tetrahedron Lett. 1984, 25, 2341–2344; b) P. Spiteller, Chem. Eur. J.
2008, 14, 9100–9110.
[21] H. T. Reynolds, V. Vijayakumar, E. Gluck-Thaler, H. B. Korotkin, P. B.
Matheny, J. C. Slot, Evol. Lett. 2018, 2, 88–101.
Acknowledgements
We thank A. Perner, H. Heinecke, and V. Hänsch (Leibniz
Institute for Natural Product Research and Infection Biology,
Hans-Knöll-Institute Jena) for recording HRMS and NMR spectra,
and for support with chemical syntheses, respectively. We thank
O. Lenz (Otto Group, Dresden) for adapting the specrend source
code. C. L. acknowledges
a doctoral fellowship by the
International Leibniz Research School (ILRS) for Microbial
Interactions. This work was funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation)
– Project-ID 239748522 – SFB 1127 and by the Usona Institute
(Madison, WI).
Keywords: bufotenin • chromophore • oxidation • psilocybin •
tryptamine
[1]
[2]
a) F. Tyls, T. Palenicek, J. Horacek, Europ. Neuropsychopharmacol.
2014, 24, 342–356; b) R. B. Kargbo, ACS Med. Chem. Lett. 2020, 11,
399–402.
a) D. E. Nichols, J. Antibiot. 2020, 73, 679–686; b) C. Lenz, A. Sherwood,
R. Kargbo, D. Hoffmeister, ChemPlusChem 2021, 86, 28–35; c) J. Fricke,
C. Lenz, J. Wick, F. Blei, D. Hoffmeister, Chem. Eur. J. 2019, 25, 897–
903.
5
This article is protected by copyright. All rights reserved.