Crystal Growth & Design
ARTICLE
accommodate more substrates binding to Cu(II) centers to
facilitate this oxidative coupling, and thus, the higher yield of
PPE is observed. This is also in agreement with the experimental
result. For example, the pore volumes for 1ꢀ3 are 274.8, 554.1,
’ AUTHOR INFORMATION
Corresponding Author
*
Fax: (86) 0371-67761744. E-mail: houhongw@zzu.edu.cn.
3
and 81.9 Å (2 > 1 > 3), respectively, which are calculated by
PLATON. The yields of PPE also follow the order 32% for 1,
’
ACKNOWLEDGMENT
This work was financially supported by the National Natural
4
4% for 2, and 25% for 3. We also found that complexes 3 and 4
provide similar results. This may be due to the fact that they are
isostructural. Comparing the two copper complexes, it is found
that the Cu(II) centers in complex 5 have higher coordination
numbers than those of 6, but complex 5 generally shows the
highest activity within this system. This is possibly attributed to a
Science Foundation (Nos. 20971110 and 91022013), Program
for New Century Excellent Talents of Ministry of Education of
China (NCET-07-0765), the Outstanding Talented Persons
Foundation of Henan Province, and The Ministry of Science
and Technology of China for the International Science Linkages
Program (2009DFA50620).
3
little larger pore volume of 5 (pore volume for 5, 53.0 Å ; for 6,
3
4
5.0 Å ) and the nature of coordinated anions, which may favor
the coordination of the substrate to Cu(II) centers to promote
the oxidative coupling reaction. It is evident that the metal
centers, coordinated anions, pore sizes, and coordination geo-
metries of the structures have great influence on the catalytic
activities. As a result, further structure modification for MOFs
could be realized through objective molecular design and synth-
esis, and then enhance the catalytic properties for desired
applications.
Taking into account that complex 5 was high catalytically
active in the green catalysis process of the oxidative coupling of
DMP, we take the complex as an example to study the stability
after catalytic reaction. After completion of the polymerization,
simple filtration of the reaction mixture allowed the separation
of the solid-state catalyst from the product-containing solu-
’
REFERENCES
(
1) (a) Han, S. S.; Goddard, W. A., III. J. Am. Soc. Chem. 2007,
129, 8422. (b) Kaczorowski, T.; Justyniak, I.; Lipinska, T.; Lipkowski, J.;
Lewinski, J. J. Am. Chem. Soc. 2009, 131, 5393. (c) Eddaoudi, M.; Moler,
D. B.; Li, H.; Chen, B.; Reineke, T. M.; O’Keeffe, M.; Yaghi, O. M. Acc.
Chem. Res. 2001, 34, 319. (d) Fang, Q. R.; Zhu, G. S.; Xue, M.; Sun, J. Y.;
Wei, Y.; Qiu, S. L.; Xu, R. R. Angew. Chem., Int. Ed. 2005, 44, 3845.
(e) Yamauchi, Y.; Yoshizawa, M.; Fujita, M. J. Am. Chem. Soc. 2008,
130, 5832. (f) Xu, J.; Pan, Z. R.; Wang, T. W.; Li, Y. Z.; Guo, Z. J.; Batten,
S. R.; Zheng, H. G. CrystEngComm 2010, 12, 612. (g) Zhang, F. W.; Li,
Z. F.; Ge, T. Z.; Yao, H. C.; Li, G.; Lu, H. J.; Zhu, Y. Y. Inorg. Chem. 2010,
49, 3776.
(
2) (a) Yoshizawa, M.; Nagao, M.; Umemoto, K.; Biradha, K.; Fujita,
M.; Sakamoto, S.; Yamaguchi, K. Chem. Commun. 2003, 1808. (b) Chen,
B.; Fronczek, F. R.; Maverick, A. W. Chem. Commun. 2003, 2166.
tion. After washing with CHCl several times, the catalyst was
3
characterized by powder XRD. The XRD patterns of the
catalyst before and after catalytic reaction are the same, which
indicates that the structural integrity of complex 5 was main-
tained during the catalytic process (Figure S3 of the Support-
ing Information). Then the complex was reused for the next
cycle. The result showed that complex 5 could be used for the
next cycle without significant loss of selectivity and only a slight
loss of conversion was observed. The slight loss of conversion
may be caused by the loss of the catalyst during the recovery
process. The complex exhibits a great potential as recyclable
catalyst.
(
c) Batten, S. R.; Murray, K. S. Coord. Chem. Rev. 2003, 246, 103. (d)
Chen, B.; Ma, S.; Zapata, F.; Fronczek, F. R.; Lobkovsky, E. B.; Zhou,
H. C. Inorg. Chem. 2007, 46, 1233. (e) Chen, S. M.; Lu, C. Z.; Zhang,
Q. Z.; Liu, J. H.; Wu, X. Y. Eur. J. Inorg. Chem. 2005, 423. (f) Cho, S. H.;
Ma, B.; Nguyen, S. T.; Hupp, J. T.; Albrecht-Schmitt, T. E. Chem.
Commun. 2006, 2563.
(
3) (a) Ye, B. H.; Ding, B. B.; Weng, Y. Q.; Chen, X. M. Cryst. Growth
Des. 2005, 5, 801. (b) Qi, Y.; Che, Y. X.; Zheng, J. M. Cryst. Growth Des.
008, 8, 3602. (c) Zhu, S. R.; Zhang, H.; Zhao, Y. M.; Shao, M.; Wang,
2
Z. X.; Li, M. X. J. Mol. Struct. 2008, 892, 420. (d) Su, Z.; Xu, J.; Fan, J.;
Liu, D. J.; Chu, Q.; Chen, M. S.; Chen, S. S.; Liu, G. X.; Wang, X. F.; Sun,
W. Y. Cryst. Growth Des. 2009, 9, 2801. (e) Du, M.; Jiang, X. J.; Zhao, X. J.
Inorg. Chem. 2007, 46, 3984.
(4) (a) Mu, Y. J.; Song, Y. J.; Wang, C.; Hou, H. W.; Fan, Y. T. Inorg.
’
CONCLUSIONS
Chim. Acta 2010, 365, 167. (b) Hu, J. Y.; Li, J. P.; Zhao, J. A.; Hou, H. W.;
Fan, Y. T. Inorg. Chim. Acta 2009, 362, 5023. (c) Meng, X. R.; Song,
Y. L.; Hou, H. W.; Han, H. Y.; Xiao, B.; Fan, Y. T.; Zhu, Y. Inorg. Chem.
In summary, we have synthesized and characterized six new
MOFs based on aromatic polycarboxylate and a long flexible
bis(triazole) ligand, which show rich structural features. The
results of this study illustrate that the coordination modes of
carboxylate ligand and the nature of the neutral ligands play
important roles in the construction of MOFs. The catalytic
activities of the complexes indicate that the copper complexes
may be good catalysts for the oxidative coupling of 2,6-dimethyl-
phenol (DMP). It is anticipated that more metal complexes
containing neutral ligands and aromatic carboxylate anions with
interesting structures as well as physical properties will be
synthesized.
2
004, 43, 3528. (d) Ren, C.; Liu, P.; Wang, Y. Y.; Huang, W. H.; Shi,
Q. Z. Eur. J. Inorg. Chem. 2010, 5545. (e) Ren, C.; Hou, L.; Liu, B.; Yang,
G. P.; Wang, Y. Y.; Shi, Q. Z. Dalton Trans. 2011, 40, 793.
(5) (a) Yang, E. C.; Liu, Z. Y.; Shi, X. J.; Liang, Q. Q.; Zhao, X. J.
Inorg. Chem. 2010, 49, 7969. (b) Wang, X. L.; Bi, Y. F.; Lin, H. Y.; Liu,
G. C. Cryst. Growth Des. 2007, 7, 1086.
(
(
6) Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112.
7) Zhang, E. P.; Hou, H. W.; Han, H. Y.; Fan, Y. T. J. Organomet.
Chem. 2008, 693, 1927.
8) (a) Qi, Y.; Luo, F.; Che, Y. X.; Zheng, J. M. Cryst. Growth Des.
008, 8, 606. (b) Bai, H. Y.; Ma, J. F.; Yang, J.; Zhang, L. P.; Ma, J. C.; Liu,
(
2
Y. Y. Cryst. Growth Des. 2010, 10, 1946. (c) Yang, W. B.; Lin, X.; Blake,
A. J.; Wilson, C.; Hubberstey, P.; Champness, N. R.; Schr €o der, M. Inorg.
Chem. 2009, 48, 11067. (d) Wang, L.; Gu, W.; Deng, J. X.; Liu, M. L.; Xu,
N.; Liu, X. Z. Anorg. Allg. Chem. 2009, 636, 1124.
’
ASSOCIATED CONTENT
(
9) (a) Li, C. Y.; Liu, C. S.; Li, J. R.; Bu, X. H. Cryst. Growth Des. 2007,
S
Supporting Information. X-ray crystallographic files in
b
7, 286. (b) Gao, E. Q.; Xu, Y. X.; Yan, C. H. CrystEngComm 2004, 6, 298.
(10) (a) Sun, H. L.; Gao, S.; Ma, B. Q.; Batten, S. R. CrystEngComm
2004, 6, 579. (b) Martin, D. P.; Supkowski, R. M.; LaDuca, R. L. Cryst.
CIF format and powder X-ray patterns for 1ꢀ6. This material is
available free of charge via the Internet at http://pubs.acs.org.
2
192
dx.doi.org/10.1021/cg101494t |Cryst. Growth Des. 2011, 11, 2183–2193