LETTER
One-Pot Cycloisomerization-Wittig Sequence with Yne-Allyl Alcohols
657
Table 2 Cycloisomerization–Wittig Sequence of Yne Allyl Alco-
hols 1 and Phosphorus Ylides 3 to 2,3,6,7-Bisunsaturated Carbonyl
Compounds 4
References
a
(1) For recent excellent reviews on transition metal-assisted
sequential transformations and domino processes, see e.g.:
(a) Balme, G.; Bossharth, E.; Monteiro, N. Eur. J. Org.
Chem. 2003, 4101. (b) Battistuzzi, G.; Cacchi, S.; Fabrizi,
G. Eur. J. Org. Chem. 2002, 2671. (c) Negishi, E.-I.;
Copéret, C.; Ma, S.; Liou, S.-Y.; Liu, F. Chem. Rev. 1996,
En-
try
Yne allyl Ylide 3
alcohol 1
Time 2,3,6,7-Bisunsaturated
(h)
carbonyl compound
b
4
(yield,%)
1
1a
3a:
R = OEt
18
96, 365. (d) Tietze, L. F. Chem. Rev. 1996, 96, 115.
2
(
2) For representative transition metal catalyzed Alder-ene
reactions, see e.g.: (a) Pd: Trost, B. M. Acc. Chem. Res.
1
990, 23, 34. (b) Pd: Trost, B. M. Janssen Chim. Acta 1991,
4
a (41)
9, 3. (c) Pd: Trost, B. M.; Krische, M. J. Synlett 1998, 1.
2
1b
3a
0.5
(
d) Ru: Trost, B. M. Chem. Ber. 1996, 129, 1313. (e) Ru:
Trost, B. M.; Toste, F. D. Tetrahedron Lett. 1999, 40, 7739.
f) Rh: Cao, P.; Wang, B.; Zhang, X. J. Am. Chem. Soc.
000, 122, 6490. (g) Rh: Cao, P.; Zhang, X. Angew. Chem.
(
2
Int. Ed. 2000, 22, 4104. (h) Rh: Lei, A.; He, M.; Zhang, X.
J. Am. Chem. Soc. 2002, 124, 8198. (i) Ir: Chatani, N.;
Inoue, H.; Morimoto, T.; Muto, T.; Murai, S. J. Org. Chem.
4
4
4
4
b (51)
c (44)
d (69)
e (80)
3
4
5
6
1c
1d
1f
3a
3a
3a
1.25
0.5
2
2001, 66, 4433. (j) Ti: Sturla, S. J.; Kablaoui, N. M.;
Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 1976.
3) For leading reviews on Pd catalyzed cycloisomerizations,
see, e.g.: (a) Lloyd-Jones, G. C. Org. Biomol. Chem. 2003,
(
215. (b) Aubert, C.; Buisine, O.; Malacria, M. Chem. Rev.
2002, 102, 813.
(
4) (a) Karpov, A. S.; Rominger, F.; Müller, T. J. J. J. Org.
Chem. 2003, 68, 1503. (b) Yehia, N. A. M.; Polborn, K.;
Müller, T. J. J. Tetrahedron Lett. 2002, 43, 6907. (c)Braun,
R. U.; Zeitler, K.; Müller, T. J. J. Org. Lett. 2001, 3, 3297.
(
d) Müller, T. J. J.; Robert, J. P.; Schmälzlin, E.; Bräuchle,
C.; Meerholz, K. Org. Lett. 2000, 2, 2419. (e) Müller, T. J.
J.; Ansorge, M.; Aktah, D. Angew. Chem. Int. Ed. 2000, 39,
1
253.
5) (a) Trost, B. M.; Li, Y. J. Am. Chem. Soc. 1996, 118, 6625.
b) Yamada, H.; Aoyagi, S.; Kibayashi, C. Tetrahedron Lett.
997, 38, 3027.
2
1f
3b: R =
Me
1.6
(
(
(
1
6) (a) The synthesis of yne allyl alcohol substrates were
4
4
f (67)
g (71)
performed according to: Sajiki, H.; Hirota, K. Tetrahedron
7
1g
3a
6
1998, 54, 13981. (b) The detailed protocols will be
described elsewhere.
(
7) Typical Procedure (2e, entry 5): To a solution of Pd2
(
dba) ·CHCl (31 mg, 0.03 mmol) in dichloroethane (10 mL)
3 3
were added 1e (0.312 g, 1.00 mmol) and HCOOH (92 mg,
.0 mmol). The reaction mixture was stirred at r.t. for 2 h and
2
a
Reaction conditions: 1.0 equiv of the yne allyl alcohol 1, 2 equiv
of HCOOH, 0.04 equiv of Pd (dba) ·CHCl , 1.3–1.8 equiv of ylide
then diluted with of Et O (150 mL). After filtration the
2
2
3
3
solvents were evaporated in vacuo and the residue was
chromatographed on silica gel to give 0.246 g (79%) of 2e as
a yellow oil. IR (neat): 2954 (s), 2897 (w), 2844 (w), 2724
3
(0.1 M in dichloroethane).
b
Yields refer to isolated yields of compounds 4 after flash chroma-
tography on silica gel to be ≥ 95% pure as determined by NMR
spectroscopy and elemental analysis and/or HRMS.
(
w), 1736 (s), 1626 (m), 1436 (s), 1251 (s), 1201 (s), 1165
(
7
s), 1122 (m), 1077 (m), 1026 (w), 961 (w), 866 (s), 841 (s),
–
1 1
48 (w), 693 (w) cm . H NMR (CDCl , 300 MHz): d = 0.11
3
(
s, 9 H), 1.85 (dd, J = 10.5, 13.0 Hz, 1 H), 2.48 (ddd, J = 2.0,
.2, 17.3 Hz, 1 H), 2.62–2.82 (m, 2 H), 2.91 (dt, J = 3.2, 17.0
Hz, 1 H), 2.96–3.05 (m, 1 H), 3.10 (d, J = 17.0 Hz, 1 H), 3.73
8
(
s, 3 H), 3.75 (s, 3 H), 5.30 (q, J = 2.3 Hz, 1 H), 9.79 (t, J =
1
3
1
3
5
.6 Hz, 1 H). C NMR (CDCl , 125.8 MHz): d = –0.6 (CH ),
3
3
8.9 (CH), 39.0 (CH ), 40.2 (CH ), 48.2 (CH ), 52.7 (CH ),
2
2
2
3
2.8 (CH ), 58.6 (Cquat.), 120.6 (CH), 158.7 (Cquat.), 171.7
3
(
(
Cquat.), 171.8 (C ), 201.2 (CH). EI–MS (70 eV): m/z
quat.
+
+
%) = 312 (6) [M ], 297 (9) [M – CH ], 281 (17), 270 (27),
3
2
1
5
3
52 (29), 237 (15), 225 (10), 209 (10), 193 (14), 163 (43),
+
49 (18), 137 (17), 120 (22), 89 (66), 73 (100) [Si(CH ) ],
3
3
9 (30). HRMS: m/z calcd for C H O Si: 312.1393; found:
1
5
24
5
12.1397.
Synlett 2004, No. 4, 655–658 © Thieme Stuttgart · New York