2110
J. Skarz; ewski et al. / Tetrahedron: Asymmetry 13 (2002) 2105–2111
mixture was stirred for 2 h at 0°C (monitored by TLC)
and the layers were separated. The aqueous phase was
extracted with CH2Cl2 (3×10 ml) and the combined
organic phase was washed with water, brine and dried
(Na2SO4). Solvent was evaporated, the crude product
was analyzed by NMR and pure (1R,3R,RS)-8 crystal-
lized from toluene.
2.54–2.63 (m, 1H, CH2), 2.81–2.87 (m, 1H, CH2), 2.91
(s, 1H, OH), 3.72 (t, 1H, J=5.9 Hz, CH-S), 4.86 (t, 1H,
J=4.8 Hz, CH-O), 6.84 (d, 2H, J=6.8 Hz, ArH),
7.12–7.35 (m, 13H, ArH); 13C NMR (CDCl3), l: 39.9,
69.8, 72.1, 125.5, 126.5, 128.2, 128.8, 128.9, 128.9,
129.0, 129.5, 131.6, 134.5, 142.0, 143.6; IR (KBr): 3400,
3059, 3031, 2921, 2890, 1451, 1445, 1055, 1036, 1021,
759, 750, 698 cm−1.
4.8.3. Oxidation with H2O2, VO(acac)2 and chiral Schiff
base. Vanadyl acetylacetonate (5.2 mg, 0.02 mmol) and
ligand 1011b (0.03 mmol) were dissolved in a test tube in
dichloromethane (4 ml), and the solution was stirred
for 5 min at 25°C. After the addition of the sulfide 2 (2
mmol) the solution was cooled to 0°C and 30% H2O2
(0.26 ml, 2.3 mmol) was added dropwise during 10 min.
The mixture was stirred for 20 h at 0°C and extracted
with CH2Cl2 (2×5 ml). The combined organic extracts
were washed with H2O, brine and dried over Na2SO4.
The solvent was removed in vacuo and the crude
product analyzed by NMR was chromatographed on
silica gel (t-BuOMe/CHCl3/hexane) and the collected
fractions were recrystallized from methylene dichloride/
hexane to give in each case three pure diastereomers
(see: Scheme 2).
4.9. Representative procedure for elimination reaction
Hydroxysulfoxide (1R,3R,RS)-8 (70 mg, 0.21 mmol)
was dissolved in xylene (1.5 ml) and anhydrous Na2CO3
was added in excess. The mixture was heated under
reflux for 1 h (monitored by TLC). The solvent was
evaporated. The residue was dissolved in CH2Cl2,
washed with water and brine and dried (Na2SO4).
Product 9 was purified by column chromatography.
4.9.1. (+)-(R)-3-Hydroxy-1,3-diphenylprop-1-ene, 9.
Yield 87%. 6:4 trans/cis mixture; [h]2D0=+20.3 (0.74,
CH2Cl2); lit.10 [h]D20=+28.1 (1, CH2Cl2) for trans-(+)-
1
(R)-9, H NMR (CDCl3), l: 1.86 (br s, 1H, OH), 5.10
(t, 0.4H, J=6.36 Hz CH-O, cis-isomer) 5.38 (d, 0.6H,
J=6.4 Hz, CH-O, trans-isomer), 6.38 (two dd, 1H,
J1=15.9 Hz, J2=6.4 Hz, CH), 6.68 (d, 1H, J=15.9 Hz,
CH), 7.22–7.44 (m, 10H, ArH).
4.8.4. 1,3-Diphenyl-3-phenylsulfinylpropan-1-ol, 8
4.8.4.1. (1R,3R,RS)-8. Mp=130–132°C (toluene).
1
[h]2D0=+126 (0.7, CH2Cl2); H NMR (CDCl3), l: 2.41–
2.50 (m, 1H, CH2), 2.64–2.73 (m, 1H, CH2), 2.74 (s,
1H, OH), 3.88 (t, 1H, J=7.2 Hz, CH-S), 4.97 (t, 1H,
J=6.3 Hz, CH-O), 6.82 (d, 2H, J=7.3 Hz, ArH), 7.06
(d, 2H, J=7.4 Hz, ArH), 7.15–7.40 (m, 11H, ArH); 13C
NMR (CDCl3), l: 37.3, 66.5, 71.6, 125.1, 126.1, 128.0,
128.0, 128.3, 128.4, 128.7, 129.4, 130.9, 132.2, 140.2,
143.4; IR (KBr): 3363, 3085, 3057, 3028, 2909, 1494,
1447, 1024, 1017, 989, 747, 699 cm−1. Anal. calcd for
C21H20O2S (M=336.434): C, 74.96; H, 5.99; S, 9.53.
Found: C, 74.71; H, 6.09; S, 9.40%.
Acknowledgements
The authors thank the Polish Committee for Scientific
Research for financial support (KBN Grant 7 T09A
109 21).
References
1. (a) Mikołajczyk, M.; Drabowicz, J.; Kiełbasin´ski, P. Chi-
ral Sulfur Reagents. Applications in Asymmetric and
Stereoselective Synthesis; CRC Press: Boca Raton, 1997;
(b) Carren˜o, M. C. Chem. Rev. 1995, 95, 1717–1760; (c)
Organosulfur Chemistry; Page, P. C. B., Ed.; Academic
Press: San Diego/London, 1998; Vol. 2.
2. (a) Arai, Y.; Suzuki, A.; Masuda, T.; Masaki, Y.; Shiro,
M. Chem. Pharm. Bull. Jpn. 1996, 44, 1765–1769; (b)
Solladie, G.; Colobert, F.; Sommy, F. Tetrahedron Lett.
1999, 40, 1227–1228; (c) Nakamura, S.; Kuroyanagi, M.;
Watanabe, Y.; Toru, T. J. Chem. Soc., Perkin Trans. 1
2000, 3143–3148; (d) Nakamura, S.; Oda, S.; Yasuda, H.;
Toru, T. Tetrahedron 2001, 57, 8469–8480.
4.8.4.2. (1S,3R,RS)-8. Mp=140–141.5°C (CH2Cl2/
1
hexane); [h]2D0=+53 (0.2, CH2Cl2); H NMR (CDCl3),
l: 1.74 (s, 1H, OH), 2.42– 2.49 (m, 1H, CH2), 2.59–2.66
(m, 1H, CH2), 4.23 (dd, 1H, J1=9.9 Hz, J2=4.8 Hz,
CH-S), 4.57 (d, 1H, J=9.5 Hz, CH-O), 6.91 (d, 2H,
J=7.0 Hz, ArH), 7.05 (d, 2H, J=7.0 Hz, ArH), 7.14–
7.36 (m, 11H, ArH); 13C NMR (CDCl3), l: 38.5, 67.5,
72.1, 125.1, 125.8, 127.2, 127.8, 128.1, 128.3, 128.6,
128.7, 129.5, 130.9, 137.5, 144.2; IR (KBr): 3374, 3059,
3026, 2918, 1494, 1445, 1016, 995, 747, 699 cm−1.
4.8.4.3. (1S,3R,SS)-8. Mp=145–148°C (toluene);
1
[h]2D0=+65 (0.75, CH2Cl2); H NMR (CDCl3), l: 2.38–
3. Skarz; ewski, J.; Zielinska-Błajet, M.; Turowska-Tyrk, I.
2.45 (m, 1H, CH2), 2.72–2.80 (m, 1H, CH2), 2.95 (br s,
1H, OH), 4.16 (dd, 1H, J1=8.8 Hz, J2=4.9 Hz, CH-S),
4.56 (d, 1H, J=8.9 Hz, CH-O), 6.97 (d, 2H, J=6.4 Hz,
ArH), 7.20–7.41 (m, 13H, ArH); 13C NMR (CDCl3), l:
40.1, 70.7, 71.6, 125.2, 125.7, 127.7, 128.3, 128.6, 128.6,
128.8, 129.3, 131.3, 134.0, 141.7, 144.4; IR (KBr): 3296,
3063, 3024, 2913, 1494, 1454, 1444, 1086, 1066, 1032,
748, 698 cm−1.
Tetrahedron: Asymmetry 2001, 12, 1923–1928.
4. (a) Node, M.; Nishide, K.; Shigeta, Y.; Shiraki, H.;
Obata, K. J. Am. Chem. Soc. 2000, 122, 1927–1936; (b)
Holt, D. A.; Luengo, J. I.; Yamashita, D. S.; Oh, H.-J.;
Konialian, A. L.; Yen, H.-K.; Rozamus, L. W.; Brandt,
M.; Bossard, M. J.; Levy, M. A.; Eggleston, D. S.; Liang,
J.; Schultz, L. W.; Stout, T. J.; Clardy, J. J. Am. Chem.
Soc. 1993, 115, 9925–9938.
5. (a) Chang, Y.-H.; Pinnick, H. W. J. Org. Chem. 1978, 43,
373–374; (b) Tanikaga, R.; Yamada, S.; Nishikawa, T.;
Matsui, A. Tetrahedron 1998, 54, 8933–8940.
4.8.4.4. (1R,3R,SS)-8. Mp=111–113°C (CH2Cl2/ hex-
1
ane); [h]2D0=+97 (0.6, CH2Cl2); H NMR (CDCl3), l: