C O MMU N I C A T I O N S
1
Figure 3. Aromatic region of the H NMR spectrum of compound 1 (9 ×
-
4
1
0
M) in CDCl3. Before (top) and after 5 h of irradiation at 360 nm
-
4
Figure 4. Cyclic voltammogram of 1 (5 × 10 M in 0.1 M Bu4NPF6/
(bottom).
-
1
CH2Cl2; 100 mV s ). Before irradiation (dashed line) and after 2 h of
irradiation at 360 nm (solid line).
The unusual upfield chemical shifts of these hydrogens are due
to their location in the shielding cone of their respective facing
thiophenic or benzenic system. The spectrum recorded after
irradiation at 360 nm shows new signals associated with the new
parameters for 1 (PDF and CIF). This material is available free of charge
via the Internet at http://pubs.acs.org.
geometry of the molecule. The chemical shifts of H
1
and H
d
protons
References
have been followed by 2D dipole-dipole interactions proton
correlation analysis (NOESY). Thus, the broad singlet of the four
(
1) (a) Drexler, K. E. Nanosystems: Molecular Machinery, Manufacturing
and Computation; Wiley: New York, 1992. (b) Special issue. Science
2
000, 288, 79-106. Movement: molecular to robotic. (c) Balzani, V.;
H
1
protons at 6.79 ppm becomes a doublet at 7.32 ppm, while the
Credi, A.; Raymo, A. F. M.; Stoddart, J. F. Angew. Chem., Int. Ed. 2000,
39, 3348-3391. (d) Sauvage, J.-P. Acc. Chem. Res. 1998, 31, 611-619.
doublet of the H protons shifts from 6.58 to 7.20 ppm.
d
(
e) Kelly, T. R.; De Silva, H.; Silva, R. A. Nature 1999, 401, 150-152.
The downfield shift of these protons reflects their exit from the
shielding cone of the opposite aromatic cycle due to the changes
in the geometry of the azo and 4T systems. Before irradiation, the
(
f) Koumura, N.; Zijlstra, R. W.; van Delden, R. A.; Harada, N.; Feringa,
B. L. Nature 1999, 401, 152-154. (g) Jimenez, M. C.; Dietrich-Buchecker,
C.; Sauvage, J.-P.; DeCian, A. Angew. Chem., Int. Ed. 2000, 39, 3284-
3
287. (h) Bedard, T. C.; Moore, J. S. J. Am. Chem. Soc. 1995, 117,
NOESY spectrum shows interactions between H
c
and H
1
protons
10662-10671.
(
2) Baughman, R. H. Synth. Met. 1996, 78, 339-353.
3) (a) Marsella, M. J.; Reid, R. J.; Estassi, S.; Wang, L.-S. J. Am. Chem.
Soc. 2002, 124, 12507-12510. (b) Marsella, M. J. Acc. Chem. Res. 2002,
as well as between H and H , pointing out the short distances
d
2
(
between these various protons. The loss of this correlation after
isomerization reflects the increase of the distance between these
protons. Integration of the new signals shows that after 5 h of
irradiation, 47% of compound 1 has been isomerized. Irradiation
at 480 nm allows one to restore the initial spectrum, and the absence
of a new signal after a complete forward/backward cycle confirms
the photostability of the system.
35, 944-951.
(
4) Hartley, G. S. Nature 1937, 140, 281-282.
(
5) (a) Van Hal, P. A.; Beckers, E. H. A.; Meskers, S. C. J.; Janssen, R. A.
J.; Jousselme, B.; Blanchard, P.; Roncali, J. Chem.-Eur. J. 2002, 8, 5415-
5
429. (b) Jousselme, B.; Blanchard, P.; Gallego-Planas, N.; Delaunay, J.;
Allain, M.; Richomme, P.; Levillain, E.; Roncali, J. J. Am. Chem. Soc.
2003, 125, 1363-1370.
(
6) See the Supporting Information for full details.
(
7) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M.
A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.;
Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels,
A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.;
Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford,
S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.;
Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.;
Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.;
Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.;
Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.;
Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen,
W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople
J. A. Gaussian 98, revision A.9; Gaussian, Inc.: Pittsburgh, PA, 1998.
0
The CV of 1 shows a reversible oxidation wave (E ) 0.94 V)
corresponding to the generation of the 4T cation radical (Figure 4).10
Irradiation at 360 nm produces a decrease of the intensity of this
wave with emergence of a new redox system at lower potential
0
(
E ) 0.78 V). These changes are fully reversible, and the initial
CV is restored by irradiation at 480 nm. These results show in
agreement with theoretical results that the photoinduced SAS to
ASA transition of the 4T chain significantly increases the HOMO
level, thus confirming that photomechanical control of the electronic
properties of the conjugated system has been achieved.
(8) This gap value corresponds to the HOMO - LUMO + 1 gap because
the LUMO is essentially localized on the azobenzene group.
(9) Irradiation was performed with a 150 W xenon lamp using band-pass
filters.
Supporting Information Available: Synthetic procedure and
characterization of compound 1, crystallographic data, tables of bond
distances and angles, positional parameters, and general displacement
(10) A control experiment on p-dimethylazobenzene shows that the azo group
is electrochemically inert up to +1.70 V versus Ag/AgCl.
JA029754Z
J. AM. CHEM. SOC.
9
VOL. 125, NO. 10, 2003 2889