Table 1. Screening of Reaction Conditions
a,b
c
entry
Pd salt
solvent
time (h) yield, ee (%)
1
2
3
4
5
6
7
8
9
Pd(OAc)
2
THF (0.1)
THF (0.1)
THF (0.1)
THF (0.1)
THF (0.1)
24
24
24
24
24
24
24
24
24
24
16
24
20
8
48, 56
51, 57
42, 54
23, 47
-
2 3 2
PdCl (CH CN)
Pd(TFA)
[Pd(allyl)Cl]
2
2
Pd
2
dba
3
3 CHCl3
Pd(OAc)
Pd(OAc)
Pd(OAc)
Pd(OAc)
Pd(OAc)
2
2
2
2
2
2
Et O (0.1)
-
DCM (0.1)
DCE (0.1)
63, 85
49, 10
63, 97
70, 97
93, 97
-
Figure 1. Design of multi-Pd/Zn-complexes.
toluene (0.1)
toluene (0.2)
toluene (0.5)
toluene (0.5)
THF (0.5)
10
reported ligands are expensive and somewhat difficult to
synthesize; thus, a simple procedure for the synthesis of
11
Pd(OAc)
2
d
d
d
d
d
d
d
12
13
Pd(OAc)2
(
R)-BINOL-PHOS (BP1) (3 steps without column chro-
matography, 65% yield from inexpensive (R)-BINOL)
Pd(OAc)
Pd(OAc)
2
2
47, 64
66, 69
88, 69
86, 60
-
14
dioxane (0.5)
DCM (0.5)
DCE (0.5)
2,5
15
Pd(OAc)2
8
could broaden the utility of the present catalysis.
1
1
1
6
7
8
Pd(OAc)
Pd(OAc)
2
2
8
DMF (0.5)
DCM (0.5)
20
24
2
PdCl (CH
3
CN)
2
85, 59
a
b
The concentration of 1a is in parentheses. DCM, dichloro-
methane; DCE, 1,2-dichloroethane; DMF, N,N-dimethylformamide.
NMR yields. The enantiomeric excess was determined by chiral HPLC
(5 mol %) was added.
c
d
analyses (see Supporting Information). Zn(OTf)
2
screening of Pd(II) salts showed the comparable enantio-
selectivities (entries 2-4); however, Pd(0) precursor did
not work at all (entry 5). Thus, Pd(OAc) was used as the
2
catalyst precursor for the subsequent screening of solvents.
Further examination showed that toluene could be used to
achieve excellent ee (entry 9). A higher concentration of 1a
in toluene improved the yield of product; 0.5 M gave the
best results, and the product 2a was obtained in 93% yield
with 97% ee (entry 11). To improve the reaction rate, the
use of PdCl (CH CN) or Pd(OAc) in the presence of a
2
3
2
2
e,6
4
Zn(OTf)2 system was examined.
reaction with Zn(OTf) in toluene did not proceed at all
Unexpectedly, the
2
(entry 12). Although the reaction in THF, dioxane, DCM,
or DCE proceeded, the yield and enantioselectivity were
4c,d
lower than those in entry 11 (entries 13-16). The reaction
(
4) (a) Lautens, M.; Renaud, J.-L.; Hiebert, S. J. Am. Chem. Soc.
Figure 2. Representative ligands for Pd-catalyzed asymmetric
alkylative ring opening of oxabicyclic alkenes.
2
000, 122, 1804. (b) Lautens, M.; Hiebert, S.; Renaud, J.-L. Org. Lett.
2000, 2, 1971. (c) Lautens, M.; Hiebert, S.; Renaud, J.-L. J. Am. Chem.
Soc. 2001, 123, 6834. (d) Priego, J.; Manche n~ o, O. G.; Cabrera, S.;
Array ꢀa s, R. G.; Llamas, T.; Carretero, J. C. Chem. Commun. 2002, 2512.
The initial screening of reaction conditions is described
in Table 1. The reaction of oxanorbornadiene 1a and
Me Zn (1.5 equiv) was carried out in the presence of Pd
2
salt (5 mol %) and (R)-BINOL-PHOS (BP1) (5 mol %) at
room temperature. The use of THF as a solvent gave the
product 2a in 48% yield with 56% ee (entry 1). The
(
e) Lautens, M.; Hiebert, S. J. Am. Chem. Soc. 2004, 126, 1437. (f) Dotta,
P.; Kumar, P. G. A.; Pregosin, P. S.; Albinati, A.; Rizzato, S. Organo-
metallics 2004, 23, 2295. (g) Cabrera, S.; Array ꢀa s, R. G.; Carretero, J. C.
Angew. Chem., Int. Ed. 2004, 43, 3944. (h) Imamoto, T.; Sugita, K.;
Yoshida, K. J. Am. Chem. Soc. 2005, 127, 11934. (i) Cabrera, S.;
Arrayas, R. G.; Alonso, I.; Carretero, J. C. J. Am. Chem. Soc. 2005,
27, 17938. (j) Imamoto, T.; Kumada, A.; Yoshida, K. Chem. Lett. 2007,
6, 500. (k) Imamoto, T.; Saitoh, Y.; Koide, A.; Ogura, T.; Yoshida, K.
ꢀ
1
3
Angew. Chem., Int. Ed. 2007, 46, 8636. (l) Ogura, T.; Yoshida, K.;
Yanagisawa, A.; Imamoto, T. Org. Lett. 2009, 11, 2245.
(5) (R)-BINOL (>99.0% ee) was purchased from Fuji Molecular
Planning Co., Ltd. at JPY50,000/500 g.
(
3) For reviews, see: (a) Lautens, M. Synlett 1993, 177. (b) Chiu, P.;
Lautens, M. Top. Curr. Chem. 1997, 190, 1. (c) Lautens, M.; Fagnou, K.;
Hiebert, S. Acc. Chem. Res. 2003, 36, 48.
Org. Lett., Vol. 13, No. 5, 2011
869