184
N.T.S. Phan et al. / Journal of Molecular Catalysis A: Chemical 363–364 (2012) 178–185
[2] S.K. Vooturi, C.M. Cheung, M.J. Rybak, S.M. Firestine, J. Med. Chem. 52 (2009)
5020–5031.
[3] N. Azizi, A. Khajeh-Amiri, H. Ghafuri, M. Bolourtchian, M.R. Saidi, Synlett 14
(2009) 2245–2248.
[4] S.E. Drewes, C.J. Hogan, Synth. Commun. 19 (1989) 2101–2107.
[5] S. Raghavan, K. Anuradha, Synlett (2003) 711–713.
[6] B.K. Banik, I. Banik, M. Renteriaa, S.K. Dasgupta, Tetrahedron Lett. 46 (2005)
2643–2645.
[7] R. Ballini, L. Barboni, G. Bosica, M. Petrini, Synlett (2000) 391–393.
[8] S.K. De, Heteroatom Chem. 10 (2008) 592–595.
[9] J. Chen, H. Wu, Z. Zheng, C. Jin, X. Zhang, W. Su, Tetrahedron Lett. 47 (2006)
5383–5387.
[10] A. Rahmatpour, Appl. Organometal. Chem. 25 (2011) 585–590.
[11] B. Zuo, J.X. Chen, M.C. Liu, H.Y. Wu, W.K. Su, Chin. Chem. Lett. 20 (2009) 423–426.
[12] J.X. Chen, M.C. Liu, X.L. Yang, J.C. Ding, H.Y. Wu, J. Braz. Chem. Soc. 19 (2008)
877–883.
[13] S.-X. Yu, P.W.L. Quesne, Tetrahedron Lett. 36 (1995) 6205–6208.
[14] B.C. Ranu, S. Ghosh, A. Das, Mendeleev Commun. 16 (2006) 220–221.
[15] A. Rahmatpour, J. Aalaie, Heteroatom Chem. 22 (2011) 85–90.
[16] R.G.d. Noronha, A.C. Fernandes, C.C. Romão, Tetrahedron Lett. 50 (2009)
1407–1410.
[17] M.J. Gracia, E. Losada, R. Luque, J.M. Campelo, D. Luna, J.M. Marinas, A.A. Romero,
Appl. Catal. A 349 (2008) 148–155.
Fig. 14. X-ray powder diffractogram of the fresh (a) and reused (b) IRMOF-3.
[18] G.D. Yadav, G. George, Micropor. Mesopor. Mater. 96 (2006) 36–43.
[19] K. Mantri, K. Komura, Y. Kubota, Y. Sugi, J. Mol. Catal. A 236 (2005) 168–175.
[20] N.E. Leadbeater, M. Marco, Chem. Rev. 102 (2002) 3217–3274.
[21] M. Curini, F. Montanari, O. Rosati, E. Lioy, R. Margarita, Tetrahedron Lett. 44
(2003) 3293–3295.
In order to support the recoverability and reusability of the
IRMOF-3 in the Paal–Knorr reaction, the recovered catalyst was
also characterized by FT-IR and XRD. The C O stretching vibration
of free COOH group was not observed on the FT-IR of the reused
IRMOF-3. Indeed, the spectra of the reused catalyst after the first
after the first run showed that the crystallinity of the material could
be maintained during the course of the reaction, though a slight dif-
ference in the overall structure was observed for the reused catalyst
(Fig. 14). The recyclability of the IRMOF-3 catalyst in the Paal–Knorr
reaction still needs further investigation. In a control experiment,
at room temperature for at least 1 week. The presence of a small
be one of the reason leading to the low signal in the XRD result of
the recycled catalyst (Fig. 14). Indeed, Saha and Deng previously
reported a significant loss in crystallinity after MOF-5 was fully
exposed to ammonia [95]. However, Savonnet [68], Zhang [96] and
co-workers demonstrated that IRMOF-3 catalyst could be recycled
and reused several times in the presence of amines as reactants.
[22] H. Veisi, Tetrahedron Lett. 51 (2010) 2109–2114.
[23] R. Sreekumar, R. Padmakumar, Synth. Commun. 28 (1998) 1661–1665.
[24] V. Polshettiwar, R.S. Varma, Tetrahedron 66 (2010) 1091–1097.
[25] V. Polshettiwar, B. Baruwati, R.S. Varma, Chem. Commun. (2009) 1837–1839.
[26] S.K. Pasha, V.S.V. Satyanarayana, A. Sivakumar, K. Chidambaram, L.J. Kennedy,
Chin. Chem. Lett. 22 (2011) 891–894.
[27] S.Z. Yuan, L.X. Jin Liu, Chin. Chem. Lett. 21 (2010) 664–668.
[28] Y.-H. He, G.-Q. Wang, Z. Guan, J. Heterocycl. Chem. 47 (2010) 486–489.
[29] A. Dhakshinamoorthy, M. Alvaro, A. Corma, H. Garcia, Dalton Trans. 40 (2011)
6344–6360.
[30] H.K. Chae, D.Y. Siberio-Perez, J. Kim, Y. Go, M. Eddaoudi, A.J. Matzger, M.
O’Keeffe, O.M. Yaghi, Nature 427 (2004) 523–527.
[31] D.J. Tranchemontagne, M.O.k.Z. Ni, O.M. Yaghi, Angew. Chem. Int. Ed. 47 (2008)
5136–5147.
[32] S.S. Kaye, A. Dailly, O.M. Yaghi, J.R. Long, J. Am. Chem. Soc. 129 (2007)
14176–14177.
[33] H. Furukawa, N. Ko, Y.B. Go, N. Aratani, S.B. Choi, E. Choi, A.O. Yazaydin, R.Q.
Snurr, M. O’Keeffe, J. Kim, O.M. Yaghi, Science 239 (2010) 424–428.
[34] P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati, J.F. Eubank, D.
Heurtaux, P. Clayette, C. Kreuz, J.S. Chang, Y.K. Hwang, V. Marsaud, P.N. Bories,
L. Cynober, S. Gil, G. Férey, P. Couvreur, R. Gref, Nat. Mater. 9 (2010) 172–178.
[35] R.J. Kuppler, D.J. Timmons, Q.-R. Fang, J.-R. Li, T.A. Makal, M.D. Young, D. Yuan,
D. Zhao, W. Zhuang, H.-C. Zhou, Coord. Chem. Rev. 253 (2009) 3042–3066.
[36] H. Li, M. Eddaoudi, M. O’Keeffe, O.M. Yaghi, Nature 402 (1999) 276–279.
[37] J.L.C. Rowsell, O.M. Yaghi, Micropor. Mesopor. Mater. 73 (2004) 3–14.
[38] Z.-Q. Li, L.-G. Qiu, T. Xu, Y. Wu, W. Wang, Z.-Y. Wu, X. Jiang, Mater. Lett. 63
(2009) 78–80.
[39] M. Ranocchiari, J.A.v. Bokhoven, Phys. Chem. Chem. Phys. 13 (2011) 6388–6396.
[40] T. Kamegawa, M. Saito, T. Watanabe, K. Uchihara, M. Kondo, M. Matsuoka, M.
Anpo, J. Mater. Chem. 21 (2011) 12228–12231.
4. Conclusions
[41] W. Sun, S. Li, J. Mao, Z. Guo, H. Liu, S. Dou, X. Yu, Dalton Trans. 40 (2011)
5673–5676.
[42] R.F. D’Vries, M. Iglesias, N. Snejko, S. Alvarez-Garcia, E. Gutiérrez-Puebla, M.A.
Monge, J. Mater. Chem. 22 (2012) 1191–1198.
[43] F.X.L.i. Xamena, A. Abad, A. Corma, H. Garcia, J. Catal. 250 (2007) 294–298.
[44] Y. Huang, Z. Zheng, T. Liu, J. Lü, Z. Lin, H. Li, R. Cao, Catal. Commun. 14 (2011)
27–31.
[45] I. Luz, F.X.L.i. Xamena, A. Corma, J. Catal. 276 (2010) 134–140.
[46] K.S. Jeong, Y.B. Go, S.M. Shin, S.J. Lee, J. Kim, O.M. Yaghi, N. Jeong, Chem. Sci. 2
(2011) 877–882.
[47] A. Dhakshinamoorthy, M. Alvaro, H. Garcia, ACS Catal. 1 (2011) 48–53.
[48] F.X.L.i. Xamena, O. Casanova, R.G. Tailleur, A.C.H. Garcia, J. Catal. 255 (2008)
220–227.
[49] H. Liu, Y. Liu, Y. Li, Z. Tang, H. Jiang, J. Phys. Chem. C 114 (2010) 13362–13369.
[50] W. Kleist, M. Maciejewski, A. Baiker, Thermochim. Acta 499 (2010) 71–78.
[51] A. Dhakshinamoorthy, M. Alvaro, H. Garcia, J. Catal. 267 (2009) 1–4.
[52] W. Wang, Y. Li, R. Zhang, D. He, H. Liu, S. Liao, Catal. Commun. 12 (2011)
875–879.
In summary, highly crystalline porous IRMOF-3 was synthesized
from the reaction of zinc nitrate hexahydrate and 2-amino-1,4-
benzenedicarboxylic acid by a solvothermal method. The IRMOF-3
was characterized using a variety of different techniques, includ-
ing FT-IR, TEM, SEM, XRD, TGA, AAS, and nitrogen physisorption
measurements. The material was used as an efficient heteroge-
neous catalyst for the Paal–Knorr reaction of benzyl amine with
2,5-hexanedione to form 1-benzyl-2,5-dimethyl-1H-pyrrole as the
major product. Excellent conversions were obtained under mild
conditions in the presence of 3 mol% catalyst, and the IRMOF-3 cat-
alyst could be reused several times without significant degradation
in activity. Moreover, the Paal–Knorr reaction could only occur in
the presence of the solid IRMOF-3 catalyst, and there was no contri-
bution from leached active species, if any, in the solution phase. The
presented results demonstrate that the application of this porous
metal–organic framework could be expanded to the catalysis field,
which would be interested to the chemical industry.
[53] A. Dhakshinamoorthy, M. Alvaro, H. Garcia, Catal. Sci. Technol.
856–867.
1 (2011)
[54] F. Song, C. Wang, J.M. Falkowski, L. Ma, W. Lin, J. Am. Chem. Soc. 132 (2010)
15390–15398.
[55] S.-H. Cho, B. Ma, S.T. Nguyen, J.T. Hupp, T.E. Albrecht-Schmitt, Chem. Commun.
42 (2006) 2563–2565.
References
[56] K. Brown, S. Zolezzi, P. Aguirre, D. Venegas-Yazigi, V. Paredes-García, R. Baggio,
M.A. Novak, E. Spodine, Dalton Trans. 38 (2009) 1422–1427.
[57] S. Bhattacharjee, D.-A. Yang, W.-S. Ahn, Chem. Commun. 47 (2011) 3637–3639.
[58] F. Song, C. Wang, W. Lin, Chem. Commun. 47 (2011) 8256–8258.
[1] M. Biava, G.C. Porretta, G. Poce, S. Supino, D. Deidda, R. Pompei, P. Molicotti, F.
Manetti, M. Botta, J. Med. Chem. 49 (2006) 4946–4952.