J. Chem. Phys., Vol. 116, No. 18, 8 May 2002
The photoisomerization of aqueous ICN
8005
1
2
3
CN stretch modes. The long CN stretch relaxation time de-
termined by Benjamin agrees with the calculated
relaxation time of the CN stretch of INC presented
previously, but the subpicosecond relaxation time observed
experimentally suggests that the CN stretch is not
significantly involved in the relaxation process. Further ex-
perimental as well as theoretical studies are obviously
needed to uncover the finer details of the vibrational relax-
ation of ICN and INC.
J. Thøgersen, C. L. Thomsen, J. A. Poulsen, and S. R. Keiding, J. Phys.
Chem. A 102, 4186 ͑1998͒.
C. L. Thomsen, J. Thøgersen, and S. Keiding, J. Chem. Phys. 114, 4099
͑
2001͒.
C. L. Thomsen, P. J. Reid, and S. R. Keiding, J. Am. Chem. Soc. 122,
12795 ͑2000͒.
S. Hess, H. B u¨ rsing, and P. V o¨ hringer, J. Chem. Phys. 111, 5461 ͑1999͒.
4
5
P. K. Walhout, C. Silva, and P. F. Barbara, J. Phys. Chem. 100, 5188
͑
1996͒.
6
7
8
T. K u¨ hne and P. V o¨ ringer, J. Chem. Phys. 105, 10788 ͑1996͒.
D. D. Davis and H. Okabe, J. Chem. Phys. 49, 5526 ͑1968͒.
U. Samuni, S. Kahana, R. Fraenkel, Y. Haas, D. Danovich, and S. Shaik,
Chem. Phys. Lett. 225, 391 ͑1994͒.
W. P. Hess and S. R. Leone, J. Chem. Phys. 86, 3773 ͑1987͒.
I. Benjamin, J. Chem. Phys. 103, 2459 ͑1995͒.
J. Helbing, M. Chergui, S. Fernandez-Alberti, J. Echave, N. Halberstadt,
and J. A. Beswick, Phys. Chem. Chem. Phys. 2, 4131 ͑2000͒.
C. Wan, M. Gupta, and A. H. Zewail, Chem. Phys. Lett. 256, 279 ͑1996͒.
I. Benjamin and R. Wilson, J. Chem. Phys. 90, 4176 ͑1989͒.
A. I. Krylov and R. B. Gerner, J. Chem. Phys. 100, 4242 ͑1994͒.
E. A. Coronado, V. S. Batista, and W. H. Miller, J. Chem. Phys. 112, 5566
9
VI. CONCLUSION
10
11
In summary, our study of the photolysis of aqueous ICN
at 266 nm shows that caging of the I and CN photoproducts
by the surrounding water molecules limits the I and CN
quantum yield to 38% after 1 ps. Diffusive recombinations
involving I and CN fragments that do escape the solvent
cage further reduces the yield to 10% during the subsequent
1
1
1
1
2
3
4
5
͑
2000͒.
1
1
1
6
7
8
W. M. Pitts and A. P. Baronavski, Chem. Phys. Lett. 71, 395 ͑1980͒.
A. Treinin and E. Hayon, J. Am. Chem. Soc. 97, 1716 ͑1975͒.
P. Fornier de Violet, R. Bonneau, and J. Joussot-Dubien, Chem. Phys.
Lett. 19, 251 ͑1973͒.
The spectrum of iodine is reported by Fornier de Violet and the extinction
coefficient is reported by Treinin et al. The basis for the extinction coef-
ficient measurement is not known.
R. Foster, Molecular Association ͑Academic, London, 1979͒.
A. Thoma, G. Schalmoser, A. M. Smidt, B. E. Wurfel, and V. E. Bondy-
bey, J. Chem. Phys. 100, 5387 ͑1994͒.
C. L. Thomsen, D. Madsen, S. R. Keiding, J. Thøgersen, and O. Chris-
tiansen, J. Chem. Phys. 110, 3453 ͑1999͒.
C. L. Thomsen, D. Madsen, J. Thøgersen, J. R. Byberg, and S. R. Keiding,
J. Chem. Phys. 111, 703 ͑1999͒.
C. L. Thomsen, D. Madsen, J. A. Poulsen, C. Rønne, J. Thøgersen, S. J. K.
Jensen, and S. R. Keiding, J. Chem. Phys. ͑to be published͒.
J. Poulsen, T. M. Nymand, and S. R. Keiding, Chem. Phys. Lett. 343, 581
100 ps. Diffusive recombination produces only ICN—not
INC. This product distribution is explained in terms of the
higher electronegativity of N than of C. Thus hydrogen
19
bonding between CN and H O will involve complexes like
2
CN¯H–OH, which polarize the orientation of CN and fa-
2
2
0
1
cilitate the reaction leading to ICN.
The majority of the dissociating ICN molecules retained
within the solvent cage recombine to form ICN in Ϸ1 ps,
while a minor fraction isomerizes to INC. ICN and INC relax
to the vibrational ground state in Ϸ1 ps in good agreement
with theoretical estimates based on the golden rule formal-
ism and MD simulations assuming the vibrational relaxation
proceeds via the IC/IN stretch and ICN/INC bending modes.
However, the details of the cage back reaction and the sub-
sequent vibrational relaxation process are not experimentally
observable with the present time resolution. Hence, the fun-
damental question of to what extent isomerization of ICN in
solution is due to rotational reorientation of the dissociating
fragments prior to recombination and to interconversion dur-
ing the vibrational relaxation is still unsettled and remains
open to further investigation.
2
2
2
3
24
25
͑
2001͒.
26
J. A. Poulsen ͑private communication͒.
2
2
2
7
8
9
A. Morita and S. Kato, J. Chem. Phys. 109, 5511 ͑1998͒.
R. Rey and J. T. Hynes, J. Chem. Phys. 108, 142 ͑1998͒.
J. A. Poulsen, C. L. Thomsen, S. R. Keiding, and J. Thøgersen, J. Chem.
Phys. 108, 8461 ͑1998͒.
K. Toukan and A. Rahman, Phys. Rev. B 31, 2643 ͑1985͒.
M. J. Frisch, W. Trucks, H. B. Schlegel et al., GAUSSIAN 98, Pittsburgh
30
31
͑
1998͒.
32
By adopting this particular form of the potential a mixed term of the type
eq
eq
kCN,IN(rCNϪr )(rINϪr ) has been neglected. However, this term is
CN
IN
2
small, kCN,INϭϪ0.97 eV/Å .
3
3
3
3
4
5
M. P. Allen and D. J. Tildesley, Computer Simulations of Liquids ͑Oxford
University Press, Oxford, 1987͒.
S. F. Alberti, J. Echave, V. Engel, N. Halberstadt, and J. A. Beswick, J.
Chem. Phys. 113, 1027 ͑2000͒.
ACKNOWLEDGMENT
The many fruitful discussions with Svend Knak Jensen
are highly appreciated.
J. U. White, J. Chem. Phys. 8, 79 ͑1940͒.
This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:
30.113.111.210 On: Wed, 24 Dec 2014 10:23:40
1