368
R. Barbaro et al. / Bioorg. Med. Chem. 10 (2002) 361–369
2
4
derives from the CHARMm force field, opportunely
2
Pharmacol. Rev. 1995, 47, 266. (c) Hieble, J. P.; Ruffolo, R. R.,
Jr. Prog. Drug Res. 1996, 47, 81.
5
modified and corrected.
3
. Price, D. T.; Schwinn, D. A.; Lomasney, J. W.; Allen, L. F.;
Caron, M. G.; Lefkowitz, R. J. J. Urol 1993, 250, 546.
. (a) Chang, D. J.; Chang, T. K.; Yamanishi, S. S.; Salazar,
The best quality conformational analysis approach has
been selected because it provides the best possible con-
formational coverage within Catalyst.
4
F. H. R.; Kosaka, A. H.; Khare, R.; Bhakta, S.; Jasper, J. R.;
Shieh, I.-S.; Lesnick, J. D.; Ford, A. P. D. W.; Daniels, D. V.;
Eglen, R. M.; Clarke, D. E.; Bach, C.; Chan, H. W. FEBS
Lett. 1998, 422, 279. (b) Daniels, D. V.; Gevel, J. R.; Jasper,
J. R.; Kava, M. S.; Lesnick, J. D.; Meloy, T. D.; Stepan, G.;
Williams, T. J.; Clarke, D. E.; Chang, D. J.; Ford, A. P. D. W.
Eur. J. Pharmacol. 1999, 370, 337.
Accordingly to some literature reports, conformational
behavior of the arylpiperazine moiety shows the het-
eroring characterized by a N1–N4 di-equatorial chair.
The structures of the conformers generated for
compounds 14–17 showed a quasi-coplanar orienta-
tion of the piperazine ring with respect to the pyr-
idazinone or furoyl moiety directly linked to it, in
agreement with previous findings on piperazine
5
1
. (a) Strader, C. D.; Sigal, I. S.; Dixon, R. A. FASEB J.
989, 3, 1825. (b) Strader, C. D.; Sigal, I. S.; Dixon, R. A.
Trends Pharmacol. Sci. 1989, (Suppl.), 26.
6. (a) Mokrosz, M. J.; Paluchowska, M. H.; Char-
akchieva-Minol, S.; Bien, S. Arch. Pharm. Pharm. Med.
Chem. 1997, 330, 177. (b) Lopez-Rodriguez, M. L.; Rosado,
M. L.; Benhamu, B.; Morcillo, M. J.; Fernandez, E.; Schaper,
K.-J. J. Med. Chem. 1997, 40, 1648. (c) Kuo, G.-H.; Prouty,
C.; Murray, W. V.; Pulito, V.; Jolliffe, L.; Cheung, P.; Varga,
S.; Evangelisto, M.; Shaw, C. Bioorg. Med. Chem. 2000, 8,
2
2b
derivatives.
In addition, twisted or even orth-
ogonal conformations of the piperazine C2–C3–C5–
C6 system with respect to the phenyl ring of the arylpi-
perazinyl moiety of the ligands 2–13, demonstrated to
be highly profitable for a -AR antagonism, were also
1
6
a
found.
2
7
263.
. (a) Bolognesi, M. L.; Budriesi, R.; Cavalli, A.; Chiarini, A.;
Conformational diversity was emphasized by selection
of the conformers that fell within 20 kcal/mol range
above the lowest energy conformation found.
Gotti, R.; Leonardi, A.; Minarini, A.; Poggesi, E.; Recanatini,
M.; Rosini, M.; Tumiatti, V.; Melchiorre, C. J. Med. Chem.
1
999, 42, 4214. (b) Quaglia, W.; Pigini, M.; Piergentili, A.;
Giannella, M.; Marucci, G.; Poggesi, E.; Leonardi, A.; Mel-
chiorre, C. J. Med. Chem. 1999, 42, 2961.
8. Graham, R. M.; Pettinger, W. A. N. Engl. J. Med. 1979,
300, 232.
The Compare/Fit command within Catalyst has been
used to predict affinity values of the studied compounds.
Particularly, the Best Fit option has been selected which
manipulates the conformers of each compound to find,
when possible, different mapping modes of the ligand
within the model. As a consequence, a value of the bio-
logical activity will be associated to each mapping mode
satisfying the constraints imposed by the location of the
pharmacophore features.
9. Lepor, H. J. Androl 1991, 12, 389.
10. Caine, M. Urol. Clin. North Amer 1990, 17, 641.
11. Kenny, B.; Ballard, S.; Blagg, J.; Fox, D. J. Med. Chem.
1997, 40, 1293.
1
2. Corsano, S.; Strappaghetti, G.; Scapicchi, R.; Marucci, G.
Arch. Pharm. Pharm. Med. Chem. 1996, 39, 468.
3. Barbaro, R.; Betti, L.; Botta, M.; Corelli, F.; Giannaccini,
1
G.; Maccari, L.; Manetti, F.; Strappaghetti, G.; Corsano, S. J.
Med. Chem. 2001, 44, 2118.
For each Compare/Fit operation, the program provides
the measure (indicated as a fit value) of how closely the
pharmacophore features correspond to the molecular
groups of the ligand.
1
1
1
1
4. Bourdais, J. Bull. Soc. Chim. Fr. 1968, 8, 3246.
5. Green, P. N.; Shapero, M.; Wilson, C. J. Med. Chem.
969, 12, 326.
6. Catalyst 4.6; Molecular Simulation, Inc. (MSI): San
Diego, CA92121, USA.
7. De Marinis, R. M.; Wise, M.; Hieble, J. P.; Ruffolo R. R.,
Jr. In The Alpha-1 Adrenergic Receptor; Ruffolo, R. R., Jr.,
Acknowledgements
1
Finantial support provided by the Italian ‘Ministero
dell’Universita e della Ricerca Scientifica e Tecnologica’
`
MURST) and Italian Research National Council of
Italy (CNR Target Project on ‘Biotechnology’ is
acknowledged.
Ed.; Humana: Clifton, NJ, USA, 1987; p 211.
1
8. Pigini, M.; Brasili, L.; Giannella, M.; Giardina
Gulini, U.; Quaglia, W.; Melchiorre, C. J. Med. Chem. 1988,
1, 2300.
`
, D.;
(
3
19. Bremner, J. B.; Coban, B.; Griffith, R.; Groenewoud,
K. M.; Yates, B. F. Bioorg. Med. Chem. 2000, 8, 201.
2
0. Bremner, J. B.; Coban, B.; Griffith, R. J. Comp.-Aid. Mol.
Des 1996, 10, 545.
1. Help on Line provided by MSI along with the program
Catalyst 4.6.
2. (a) Russo, F.; Romeo, G.; Guccione, S.; De Blasi, A. J.
2
References and Notes
2
1
. Bylund, D. B.; Eikenberg, D. C.; Hieble, J. P.; Langer,
S. Z.; Lefkowitz, R. J.; Minneman, K. P.; Molinoff, P. B.;
Med. Chem. 1991, 34, 1850. (b) Cinone, N.; Carrieri, A.;
Strappaghetti, G.; Corsano, S.; Barbaro, R.; Carotti, ?.
Bioorg. Med. Chem. 1999, 7, 2615.
23. (a) Smellie, A.; Teig, S. L.; Towbin, P. J. Comp. Chem.
1995, 16, 171. (b) Smellie, A.; Kahn, S. D.; Teig, S. L. J.
Chem. Inf. Comp. Sci. 1995, 35, 285. (c) Smellie, A.; Kahn,
S. D.; Teig, S. L. J. Chem. Inf. Comp. Sci. 1995, 35, 295.
24. Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States,
Ruffolo, R. R., Jr.; Trendelenburg, U. Pharmacol. Rev. 1994,
4
2
D. E. Trends Pharmacol. Sci. 1994, 15, 167. (b) Hieble, J. P.;
Bylund, D. B.; Clarke, A. E.; Eikenberg, D. C.; Langer, S. Z.;
Lefkowitz, R. J.; Minneman, K. P.; Ruffolo, R. R., Jr.
6, 121.
. (a) Ford, A. P. D. W.; Williams, T. J.; Blue, D. R.; Clarke,