Communication
Organic & Biomolecular Chemistry
another means by which these plants protect themselves from the UV-
irradiation.
1
2
W. Zheng and S. Y. Wang, J. Agric. Food Chem., 2001, 49,
165–5170.
A. Paris, B. Strukelj, M. Renko, V. Turk, M. Pukl, A. Umek
and B. D. Korant, J. Nat. Prod., 1993, 56, 1426–1430.
J. J. Johnson, Cancer Lett., 2011, 305, 1–7.
X. Wang, S. L. Morris-Natschke and K.-H. Lee, Med. Res.
Rev., 2007, 27, 133–148.
R. J. Peters, Nat. Prod. Rep., 2010, 27, 1521–1530.
P. R. Ortiz de Montellano, Chem. Rev., 2010, 110, 932–
5
Scheme 2 Actual role of CYP76AH sub-family members in plant phenolic
diterpenoid biosynthesis.
3
4
Conclusions
5
6
In summary, our results clarify the biosynthesis of phenolic
diterpenoids, confining the role of the characterized CYP76AH
sub-family members to C12-hydroxylation of the aromatic
intermediate 3 (Scheme 2). The presence of 3, along with 1
and 2, in both rosemary and S. miltiorrhiza, is consistent with
such a role for 3 in biosynthesis of phenolic diterpenoids.
Thus, the initially formed olefin intermediate 1 first undergoes
aromatization to 3 prior to formation of 2. While the conver-
sion of 1 to 3 does occurs spontaneously, it seems likely that
this aromatization reaction is enzymatically catalysed in
planta, although the relevant enzyme is yet to be determined,
providing a target for future investigation.
948.
7
8
F. P. Guengerich, Chem. Res. Toxicol., 2001, 14, 611–650.
M. Mizutani and F. Sato, Arch. Biochem. Biophys., 2011, 507,
194–203.
9
W. Gao, M. L. Hillwig, L. Huang, G. Cui, X. Wang, J. Kong,
B. Yang and R. J. Peters, Org. Lett., 2009, 11, 5170–5173.
1
0 J. Guo, Y. J. Zhou, M. L. Hillwig, Y. Shen, L. Yang, Y. Wang,
X. Zhang, W. Liu, R. J. Peters, X. Chen, Z. K. Zhao and
L. Huang, Proc. Natl. Acad. Sci. U. S. A., 2013, 110, 12108–
12113.
11 Q. Wang, M. L. Hillwig, K. Okada, K. Yamazaki, Y. Wu,
S. Swaminathan, H. Yamane and R. J. Peters, J. Biol. Chem.,
2
012, 287, 6159–6168.
2 Q. Wang, M. L. Hillwig and R. J. Peters, Plant J., 2011, 65,
7–95.
Acknowledgements
1
1
1
1
8
This work was supported by a grant from the NIH (GM076324)
and funds from Iowa State University to R.J.P., who also
thanks the Alexander von Humboldt Foundation for sabbatical
fellowship support during the preparation of this manuscript.
3 Q. Wang, M. L. Hillwig, Y. Wu and R. J. Peters, Plant
Physiol., 2012, 158, 1418–1425.
4 Y. Wu, M. L. Hillwig, Q. Wang and R. J. Peters, FEBS Lett.,
2
011, 585, 3446–3451.
5 D. Morrone, L. Lowry, M. K. Determan, D. M. Hershey,
M. Xu and R. J. Peters, Appl. Microbiol. Biotechnol., 2010,
Notes and references
85, 1893–1906.
‡
Intriguingly, if non-enzymatic oxidation plays a role in the conversion of 1 to 3
1
6 A. Cyr, P. R. Wilderman, M. Determan and R. J. Peters,
J. Am. Chem. Soc., 2007, 129, 6684–6685.
17 P. J. Hidalgo, J. L. Ubera, M. T. Tena and M. Valcarcel,
in planta, our findings may provide a rationale for the observed seasonal
variation in content of 5 in rosemary, which seems to heavily depend on
1
7
photoperiod. We speculate that sunlight promotes the conversion of 1 to 3,
increasing the rate at which the natural antioxidant 5 is formed, providing
J. Agric. Food Chem., 1998, 46, 2624–2627.
7
652 | Org. Biomol. Chem., 2013, 11, 7650–7652
This journal is © The Royal Society of Chemistry 2013