A. Grzelakowska, et al.
JournalofPhotochemistry&PhotobiologyA:Chemistry387(2020)112153
influence the work reported in this paper.
[24] L. Tang, D. Xu, M. Tian, X. Yan, A mitochondria-targetable far-red emissive fluor-
escence probe for highly selective detection of cysteine with a large Stokes shift, J.
[25] G. Yin, T. Niu, Y. Gan, T. Yu, P. Yin, H. Chen, Y. Zhang, H. Li, S. Yao, A multi-signal
fluorescent probe with multiple binding sites for simultaneous sensing of cysteine,
homocysteine, and glutathione, Angew. Chem. Int. Ed. 57 (2018) 4991–4994,
Appendix A. Supplementary data
Supplementary material related to this article can be found, in the
[26] L.M. Hyman, K.J. Franz, Probing oxidative stress: small molecule fluorescent sen-
sors of metal ions, reactive oxygen species, and thiols, Coord. Chem. Rev. 256
References
[27] M.E. Langmuir, J.R. Yang, A.M. Moussa, R. Laura, K.A. LeCompte, New naphtho-
pyranone based fluorescent thiol probes, Tetrahedron Lett. 36 (1995) 3989–3992,
[28] M. Machida, M.I. Machida, Y. Kanaoka, Hydrolysis of N-substituted meleimides:
stability of fluorescence thiol reagents in aqueous media, Chem. Pharm. Bull. 25
[29] J. Li, C. Yin, Y. Zhang, J. Chao, F. Huo, A long wavelength fluorescent probe for
biothiols and its application in cell imaging, Anal. Methods 8 (2016) 6748–6753,
[30] T. Liu, F. Huo, J. Li, J. Chao, Y. Zhang, C. Yin, A fast response and high sensitivity
thiol fluorescent probe in living cells, Sens. Actuators B-Chem. 232 (2016) 619–624,
[31] Q. Wang, C. Ma, Y. Ma, X. Li, Y. Chen, J. Chen, Structure–activity relationships of
diverse xanthones against multidrug resistant human tumor cells, Bioorg. Med.
[32] N. Szkaradek, D. Sypniewski, A.M. Waszkielewicz, A. Gunia-Krzyżak,
A. Galilejczyk, S. Gałka, H. Marona, I. Bednarek, Synthesis and in vitro evaluation of
anticancer potential of new aminoalkanol derivatives of xanthone, Anticancer
[33] J.J. Koh, H. Zou, D. Mukherjee, S. Lin, F. Lim, J.K. Tan, D.Z. Tan, B.L. Stocker,
M.S. Timmer, H.M. Corkran, R. Lakshminarayanan, D.T.H. Tan, D. Cao,
T.W. Beuerman, T. Dick, S. Liu, Amphiphilic xanthones as a potent chemical entity
of antimycobacterial agents with membrane-targeting properties, Eur. J. Med.
[34] C. Proença, H.M.T. Albuquerque, D. Ribeiro, M. Freitas, C.M.M. Santos,
A.M.S. Silva, E. Fernandes, Novel chromone and xanthone derivatives: synthesis
and ROS/RNS scavenging activities, Eur. J. Med. Chem. 115 (2016) 381–392,
[1] A. Pompella, A. Viscikis, A. Paolicchi, V. De Tata, A.F. Casini, The changing faces of
glutathione, a cellular protagonist, Biochem. Pharmacol. 66 (2003) 1499–1503,
[2] Y. Xiong, J.D. Uys, K.D. Tew, D.M. Townsend, S-glutathionylation: from molele-
cular mechanisms to health outcomes, Antioxid. Redox Signal. 15 (2011) 233–270,
[3] T. Toyo’oka, Recent advances in separation and detection methods for thiol com-
pounds in biological samples, J. Chromatogr. B 877 (2009) 3318–3330, https://doi.
[4] X. Yang, Y. Wang, M. Zhao, W. Yang, A colorimetric and near-infrared fluorescent
probe for cysteine and homocysteine detection, Spectrochim. Acta A. 212 (2019)
[5] X. Chen, Y. Zhou, X. Peng, J. Yoon, Fluorescent and colorimetric probes for de-
[6] H. Peng, W. Chen, Y. Cheng, L. Hakuna, R. Strongin, B. Wang, Thiol reactive probes
[7] H.S. Jung, X. Chen, J.S. Kim, J. Yoon, Recent progress in luminescent and colori-
metric chemosensors for detection of thiols, Chem. Soc. Rev. 42 (2013) 6019–6031,
[8] C. Yin, F. Huo, J. Zhang, R. Martinez-Manez, Y. Yang, H. Lv, S. Li, Thiol-addition
reactions and their applications in thiol recognition, Chem. Soc. Rev. 42 (2013)
[9] H. Peng, W. Chen, Burroughs, B. Wang, Recent advances in fluorescent probes for
the detection of hydrogen sulfide, Curr. Org. Chem. 17 (2013) 641–653, https://
[10] N. Wang, M. Chen, J. Gao, X. Ji, J. He, J. Zhang, W. Zhao, A series of BODIPY-based
probes for the detection of cysteine and homocysteine in living cells, Talanta 195
[11] G. Yin, T. Niu, T. Yu, Y. Gan, X. Sun, P. Yin, H. Chen, Y. Zhang, H. Li, S. Yao,
Simultaneous visualization of endogenous homocysteine, cysteine, glutatione, and
their transformation through different fluorescence channels, Angew. Chem. Int.
[12] J. Zhang, X. Ji, H. Ren, J. Zhou, Z. Chen, X. Dong, W. Zhao, Meso-heteroaryl
BODIPY dyes as dual-responsive fluorescent probes for discrimination of Cys from
[13] J. Gao, Y. Tao, J. Zhang, N. Wang, X. Ji, J. He, Y. Si, W. Zhao, Development of
lysosome-targeted fluorescent probes for Cys by regulating the boron-dipyrro-
methene (BODIPY) molecular structure, Chem. Eur. J. 25 (2019) 11246–11256,
[14] T. Liu, F. Huo, J. Li, J. Chao, Y. Zhang, C. Yin, An off-on fluorescent probe for
specifically detecting cysteine and its application in bioimaging, Sens. Actuators B-
[15] X. Zeng, X. Zhang, B. Zhu, H. Jia, Y. Li, A highly selective wavelength-ratiometric
and colorimetric probe for cysteine, Dyes Pigm. 94 (2012) 10–15, https://doi.org/
[16] S. Chou, L. Ko, C. Yang, High performance liquid chromatography with fluorimetric
detection for the determination of total homocysteine in human plasma: method
and clinical applications, Anal. Chim. Acta 429 (2001) 331–336, https://doi.org/
[17] A. Grzelakowska, J. Kolińska, M. Mąkiewicz, The synthesis and spectroscopic
characterisation of 3-formyl-2-quinolones in the presence of biothiols, Color.
[18] O. Rusin, N.N.S. Luce, R.A. Agbaria, J.O. Escobedo, S. Jiang, I.M. Warner,
F.B. Dawan, K. Lian, R.M. Strongin, Visual detection of cysteine and homocysteine,
[19] X. Hou, Z. Li, B. Li, C. Liu, Z. Xu, An „off-on” fluorescein-based colorimetric and
fluorescent probe for the detection of glutathione and cysteine over homocysteine
and its application for cell imaging, Sens. Actuators B-Chem. 260 (2018) 295–302,
[35] K.M. Moon, C.Y. Kim, J.Y. Ma, B. Lee, Xanthone-related compounds as an anti-
browing and antioxidant food additive, Food Chem. 274 (2019) 345–350, https://
[36] O. Chantarasriwong, A.T. Milcarek, T.B. Morales, A.L. Settle, C.O. Rezende Jr.,
B.D. Althufairi, M.A. Theodoraki, M.L. Alpaugh, E.A. Theodorakis, Synthesis,
structure-activity relationship and in vitro pharmacodynamics of A-ring modified
caged xanthones in a preclinical model of inflammatory breast cancer, Eur. J. Med.
[37] L. Yan, L. Zou, L. Ma, W.H. Chen, B. Wang, Z.L. Xu, Synthesis and pharmacological
activities of xanthone derivatives as a-glucosidase inhibitors, Bioorg. Med. Chem.
[38] Y. Liu, L. Ma, W.H. Chen, H. Park, Z. Ke, B. Wang, Binding mechanism and sy-
nergetic effects of xanthone derivatives as noncompetitive a-glucosidase inhibitors:
a theoretical and experimental study, J. Phys. Chem. B 117 (2013) 13464–13471,
[39] L. Saraiva, P. Fresco, E. Pinto, E. Sousa, M. Pinto, J. Goncalves, Synthesis and in
vivo modulatory activity of protein kinase C of xanthone derivatives, Bioorg. Med.
[40] P. Pacher, A. Nivorozhkin, C. Szabo, Therapeutic effects of xanthine oxidase in-
hibitors: renaissance half a century after the discovery of Allopurinol, Pharmacol.
[41] M. Recanatini, A. Bisi, A. Cavalli, F. Belluti, S. Gobbi, A. Rampa, P. Valenti,
M. Palzer, A. Palusczak, R.W. Hartmann, A new class of nonsteroidal aromatase
inhibitors: design and synthesis of chromone and xanthone derivatives and in-
hibition of the P450 enzymes aromatase and 17-α-hydroxylase/C17,20-Lyase, J.
[42] H. Hu, H. Liao, J. Zhang, W. Wu, J. Yan, Y. Yan, Q. Zhao, Y. Zou, X. Chai, S. Yu,
Q. Wu, First identification of xanthone sulfonamides as potent acyl-CoA: cholesterol
acyltransferase (ACAT) inhibitors, Bioorg. Med. Chem. Lett. 20 (2010) 3094–3097,
[43] P. Forterre, S. Gribaldo, D. Gadelle, M.C. Serre, Origin and evolution of DNA to-
[44] M.M. Gottesman, Mechanism of cancer drug resistance, Annu. Rev. Med. 53 (2002)
[45] A. Murata, T. Fukuzumi, S. Umemoto, K. Nakatani, Xanthone derivatives as po-
tential inhibitors of miRNA processing by human dicer: targeting secondary struc-
tures of pre-miRNA by small molecules, Bioorg. Med. Chem. Lett. 23 (2013)
[46] M.E. Sousa, M.M.M. Pinto, Synthesis of xanthones: an overview, Curr. Med. Chem.
[47] J. Li, M. Hu, S.Q. Yao, Rapid synthesis, screening, and identification of xanthone-
and xanthenes-based fluorophores using click chemistry, Org. Lett. 1 (2009)
[20] B. Zhu, X. Zhang, H. Jia, Y. Li, S. Chen, S. Zhang, The determination of thiols based
using a probe that utilizes both an absorption red-shift and fluorescence enhance-
[21] J.W. Nielsen, K.S. Jensen, R.E. Hansen, C.H. Gotfredsen, J.R. Winther, A fluorescent
probe which allows highly specific thiol labeling at low pH, Anal. Biochem. 421
[22] H. Wang, G. Zhou, X. Chen, An iminofluoresecin-Cu2+ ensemble probe for selective
detection of thiols, Sens. Actuators B-Chem. 176 (2013) 698–703, https://doi.org/
[23] J. Huang, Y. Chen, J. Qi, X. Zhou, L. Niu, Z. Yan, J. Wang, G. Zhao, A dual-selective
[48] A. Katori, E. Azuma, H. Ishimura, K. Kuramochi, K. Tsubaki, Fluorescent dyes with
fluorescent probe for discriminating glutathione and homocysteine simultaneously,
10