I. Gryca et al. / Inorganica Chimica Acta xxx (2016) xxx–xxx
11
IR (KBr;
m
/cmꢁ1): 3054(w), 1686(vs), 1616(w), 1589(s), 1561
31P NMR (DMSO-d6): d = 25.42 ppm.
UV–Vis (MeCN; kmax [nm] (
; [dm3 molꢁ1 cmꢁ1])): 685 (167);
576 (277); 464 (2660); 353 (5688); 317 (21199); 279 (58217);
(sh), 1521(w), 1481(w), 1461(w), 1433(w), 1392(m), 1364(s),
1330(w), 1262(w), 1189(w), 1173(w), 1164(w), 1131(sh), 1117
(m), 1093(w), 1021(w), 996(w), 953(w), 888(w), 859(w), 804(w),
791(w), 756(w), 692(w), 528(m), 501(w) and 447(w).
e
240 (71837); 191 (127721).
1H NMR (400 MHz, DMSO-d6, ppm): d = 8.35 (d, 1H, 8.3 Hz),
7.96 (d, 1H, 8.9 Hz), 7.82(t, 1H, 7.6 Hz), 7.66–7.85 (m, 1H), 7.29–
7.19 (m, 6H), 7.19–7.11 (m, 9H), 7.05 (d, 2H, 8.3 Hz), 6.99 (d, 2H,
8.4 Hz), 6.95 (s, 1H), 4.14 (s, 3H), 2.23 (s, 3H).
4.4.4. cis-(Br,Br)-[Re(p-NC6H4CH3)Br2(isoquin-1-COO)(PPh3)] (8)
[Re(p-NC6H4CH3)Br3(PPh3)2] (0.52 g) and isoquinoline-1-car-
boxylic acid (0.10 g) yielded 360 mg of product; yield 75%. The
crystals of 4 and 8 were manually separated using a microscope
13C NMR (125 MHz, DMSO-d6): d = 168.2, 166.9, 154.1, 149.8,
143.9, 141.8, 134.7, 134.6, 134.1, 134.0, 133.1, 131.7, 131.4,
130.6, 129.8, 129.4, 129.2, 129.0, 128.9, 128.8, 128.8, 128.7,
126.6, 125.7, 123.3, 122.9, 122.1, 101.3, 100.7, 57.9, 57.1, 22.3 ppm.
31P NMR (DMSO-d6): d = 25.74 ppm.
and they were collected in 40% and 35% yield, respectively. C35H28-
Br2N2O2PRe (885.58 g/mol): Calc. C, 47.47; H, 3.19; N, 3.16; found:
C, 46.98; H, 3.21; N, 3.25%.
IR (KBr; m
/cmꢁ1): 3059(w), 1685(vs), 1618(w), 1590(w), 1481
(w), 1436(m), 1364(w), 1278(w), 1241(m), 1186(w), 1171(w),
1156(m), 1141(w), 1092(w), 1016(w), 998(w), 888(w), 821(m),
800(w), 751(m), 707(sh), 692(m), 673(w), 528(s), 507(w), 498
(w), 456(w), 443(w), 436(w).
UV–Vis (MeCN; kmax [nm] (e
; [dm3 molꢁ1 cmꢁ1])): 668 (278);
457 (3422); 330 (13924); 305 (13294); 234 (57933); 190
(130151).
1H NMR (400 MHz, DMSO-d6, ppm): d = 9.50 (d, 1H, J = 8.7 Hz),
8.38 (d, 1H, J = 6.2 Hz), 8.27 (d, 1H, J = 8.3 Hz), 8.02 (t, 1H,
J = 7.9 Hz), 7.91 (t, 2H, J = 7.1 Hz), 7.70–7.60 (m, 6H), 7.55 (t, 2H,
J = 9.2 Hz), 7.50 (s, 9H), 7.29 (d, 2H, J = 8.0 Hz), 2.30 (s, 3H).
13C NMR (125 MHz, DMSO-d6): d = 163.1, 142.4, 141.2, 140.4,
139.3, 138.5, 138.2, 136.9, 134.7, 134.6, 134.0, 133.6, 132.6,
132.5, 131.9, 131.7, 131.6, 131.4, 130.9, 130.7, 129.4, 129.3,
129.2, 128.8, 128.7, 127.8, 126.4, 126.3, 125.6, 124.2, 123.3,
121.9, 119.4, 119.3, 22.4 ppm.
4.4.2. cis-(Br,Br)-[Re(p-NC6H4CH3)Br2(4-MeO-quin-2-COO)
(PPh3)].MeOH (6)
[Re(p-NC6H4CH3)Br3(PPh3)2] (0.52 g) and 4-methoxy-2-quino-
linecarboxylic acid (0.12 g) yielded 430 mg of product; yield 80%.
The crystals of 2 and 6 were manually separated using a micro-
scope and they were collected in 45% and 35% yield, respectively.
C
37H34Br2N2O4PRe (947.65 g/mol): Calc. C, 46.90; H, 3.62; N,
2.96; found: C, 47.11; H, 3.59; N, 2.95%.
IR (KBr;
/cmꢁ1): 3049(w), 1686(vs), 1587(s), 1518(m), 1481
m
31P NMR (DMSO-d6): d = 25.79 ppm.
(w), 1453(w), 1433(m), 1386(w), 1365(s), 1329(m), 1302(w),
1283(w), 1257(w), 1186(sh), 1179(w), 1172(w), 1117(m), 1091
(w), 1033(w), 1015(w), 997(m), 959(w), 952(w), 888(w), 855(w),
827(w), 803(w), 789(w), 768(w), 754(m), 705(sh), 692(m), 647
(w), 619(w), 573(w), 529(s), 501(m), 458(w), 444(w).
UV–Vis (MeCN; kmax [nm] (e
; [dm3 molꢁ1 cmꢁ1])): 761 (89);
587 (225); 464 (1960); 327 (5489); 233 (29378); 190 (59931).
4.5. Crystal structure determination and refinement
1H NMR (400 MHz, DMSO-d6, ppm): d = 8.32 (d, 1H, 8.1 Hz),
8.06 (d, 1H, 8.9 Hz), 7.78 (t, 1H, 7.6 Hz), 7.67 (dd, 8H, 16.4,
8.3 Hz), 7.49 (d, 11H, 8.2 Hz), 7.15 (d, 2H, 8.3 Hz), 4.32 (s, 3H),
2.24 (s, 3H), 2.07 (s, 3H).
The X-ray intensity data of 1–8 were collected on a Gemini A
Ultra diffractometer equipped with Atlas CCD detector and gra-
phite monochromated Mo K
a radiation (k = 0.71073 Å) at room
temperature. Details concerning crystal data and refinement are
given in Tables S1 and S2. Lorentz, polarization and empirical
absorption correction using spherical harmonics implemented in
SCALE3 ABSPACK scaling algorithm were applied [15]. The struc-
tures were solved by the Patterson method and subsequently com-
pleted by the difference Fourier recycling. All the non-hydrogen
atoms were refined anisotropically using full-matrix, least-squares
technique. The hydrogen atoms were treated as ‘‘riding” on their
parent carbon atoms and assigned isotropic temperature factors
equal 1.2 (non-methyl) and 1.5 (methyl) times the value of equiv-
alent temperature factor of the parent atom. The methyl groups
were allowed to rotate about their local threefold axis. SHELXS97
and SHELXL97 programs were used for all the calculations [16].
Atomic scattering factors were those incorporated in the computer
programs.
13C NMR (125 MHz, DMSO-d6): d = 164.9, 163.9, 149.1, 144.0,
134.1, 134.0, 133.6, 132.8, 132.5, 131.9, 131.8, 131.4, 130.8,
130.7, 129.7, 129.2, 129.1, 129.0, 128.9, 127.0, 126.4, 125.7,
125.4, 123.3, 122.4, 121.6, 109.9, 101.2, 57.8, 22.3 ppm.
31P NMR (DMSO-d6): d = 25.79 ppm.
UV–Vis (MeCN; kmax [nm] (e
; [dm3 molꢁ1 cmꢁ1])): 666 (81);
557 (128); 462 (2831); 402 (7997); 352 (13138); 289 (17527);
250 (33505); 210 (86171).
4.4.3. cis-(Cl,Cl)-[Re(p-NC6H4CH3)Cl2(isoquin-1-COO)(PPh3)] (7)
[Re(p-NC6H4CH3)Cl3(PPh3)2] (0.48 g) and isoquinoline-1-car-
boxylic acid (0.10 g) yielded 322 mg of product; yield 75%. The
crystals of 3 and 7 were manually separated using a microscope
and they were collected in 40% and 35% yield, respectively.) C35
28Cl2N2O2PRe (796.66 g/mol): Calc. C, 52.77; H, 3.54; N, 3.52;
found: C, 52.85; H, 3.51; N, 3.48%.
IR (KBr;
/cmꢁ1): 3059(w), 1690(vs), 1654(sh), 1641(sh), 1591
-
H
4.6. Computational details
m
(m), 1551(w), 1481(m), 1434(s), 1356(w), 1320(w), 1275(w),
1241(m), 1187(w), 1169(w), 1155(m), 1141(w), 1096(m), 1015
(w), 999(w), 888(m), 818(m), 799(w), 756(sh), 750(m), 743(sh),
720(sh), 696(s), 673(w), 528(s), 515(m), 495(m), 439(w).
1H NMR (400 MHz, DMSO-d6, ppm): d = 9.00 (d, 1H, 8.8 Hz),
8.15 (t, 2H, 7.6 Hz), 7.87–7.82 (m, 2H), 7.73 (t, 1H, 7.6 Hz), 7.42
(ddd, 6H, 10.9, 8.5, 5.2 Hz), 7.22 (dd, 9H, 4.5, 2.5 Hz), 7.17 (d, 2H,
8.2 Hz), 7.07 (d, 2H, 8.4 Hz), 2.26 (s, 3H).
The gas phase geometries of 1, 3, 5 and 7 were optimized with-
out any symmetry restrictions in singlet ground-states with the
DFT method using the hybrid PBE1PBE functional of GAUSSIAN-03
program package [17]. The calculations were performed using
ECP LANL2DZ basis set with an additional d and f function with
the exponent
a = 0.3811 and a = 2.033 for rhenium and the stan-
dard 6-31G basis set for other atoms. For chlorine, oxygen, nitrogen
and phosphorous atoms, diffuse and polarization functions
were added [18]. The optimized geometries of trans-(Cl,Cl)-[Re(p-
13C NMR (125 MHz, DMSO-d6): d = 166.5, 152.8, 150.6, 148.9,
146.1, 143.4, 142.0, 141.4, 141.3, 140.3, 138.8, 137.6, 136.8,
136.2, 135.9, 133.9, 133.8, 133.6, 132.3, 131.5, 131.0, 129.8,
129.5, 129.0, 128.9, 128.8, 127.9, 127.4, 127.4, 126.7, 126.0,
124.8, 122.3, 120.9, 120.0, 22.25 ppm.
NC6H4CH3)Cl2(4-MeO-quin-2-COO)(PPh3)],
cis-(Cl,Cl)-[Re(p-NC6
H4CH3)Cl2(4-MeO-quin-2-COO)(PPh3)], trans-(Cl,Cl)-[Re(p-NC6H4
CH3)Cl2(isoquin-1-COO)(PPh3)] and cis-(Cl,Cl)-[Re(p-NC6H4CH3)
Cl2(isoquin-1-COO)(PPh3)] were verified by performing frequency