10.1002/anie.201904559
Angewandte Chemie International Edition
RESEARCH ARTICLE
reversible by dilution in apolar solvents. The peculiar
thermodynamics of this ring opening/closing sequence, supported
by DFT calculations, favour depolymerization at room
temperature and oligomerisation at high temperatures (100-
150°C). The exact mechanism governing the glass-to-liquid
transition in PSBPin at ca. 220°C is difficult to ascertain as
diagnostic spectroscopic characterization of ring-opening such as
11B ss-NMR cannot be conducted at such temperatures. Judging
from the very high viscous flow activation energies measured by
rheology, it is likely that the dynamic network is not purely driven
by associative exchanges like vitrimers, but undergoes
depolymerization like CANs. The very fact that bridging between
boron atoms lead to high glass transition temperatures in our
system and subsequently froze the depolymerization kinetics was
critical in evidencing these dynamic crosslinking phenomena.
When comparing our system to vitrimers and CANs, that have
either constant crosslinking densities or continuously decreasing
crosslinking densities with temperature, it is exciting to note that
polymers bearing cyclic boronate esters may constitute the first
example of a distinct class of dynamic networks, with a
crosslinking density increasing with temperature, at least within a
defined temperature range.
References
[1]
[2]
F. Jäkle. Chemical Reviews 2010, 110, 3985-4022.
W. L. A. Brooks, B. S. Sumerlin. Chemical Reviews 2016, 116, 1375-
1397.
[3]
[4]
[5]
G. A. Molander, N. Ellis. Accounts of Chemical Research 2007, 40, 275-
286.
E. P. Gillis, M. D. Burke. Journal of the American Chemical Society 2008,
130, 14084-14085.
D. M. Knapp, E. P. Gillis, M. D. Burke. Journal of the American Chemical
Society 2009, 131, 6961-6963.
[6]
[7]
D. V. Partyka. Chemical Reviews 2011, 111, 1529-1595.
A. Biffis, P. Centomo, A. Del Zotto, M. Zecca. Chemical Reviews 2018,
118, 2249-2295.
[8]
[9]
J. N. Cambre, B. S. Sumerlin. Polymer 2011, 52, 4631-4643.
W. Yang, X. Gao, B. Wang in Boronic Acids: Preparation and
Applications in Organic Synthesis and Medicine, (Ed.: D. G. Hall), Wiley-
VCH, 2006, pp. 481-512.
[10] K. Kataoka, H. Miyazaki, M. Bunya, T. Okano, Y. Sakurai. Journal of the
American Chemical Society 1998, 120, 12694-12695.
[11] N. Huang, P. Wang, D. Jiang, Nature Reviews 2016, 1, 16068.
[12] M. Mastalerz, Acc. Chem. Res. 2018, 51, 2411.
[13] F. Beuerle, B. Gole, Angew. Chem. Int. Ed. 2018, 57, 4850.[14]
O.
R. Cromwell, J. Chung, Z. Guan. Journal of the American Chemical
Society 2015, 137, 6492-6495.
[15] J. J. Cash, T. Kubo, A. P. Bapat, B. S. Sumerlin. Macromolecules 2015,
48, 2098-2106.
[16] D. Montarnal, M. Capelot, F. Tournilhac, L. Leibler. Science 2011, 334,
965-969.
[17] W. Denissen, J. M. Winne, F. E. Du Prez. Chemical Science 2016, 7, 30-
Experimental Section
38.
[18] L. Imbernon, S. Norvez. European Polymer Journal 2016, 82, 347-376.
[19] B. T. Worrell, M. K. McBride, B. L. Gayla, L. M. Cox, C. Wang, S. Mavila,
C.-H. Lim, H. M. Coley, C. B. Musgrave, Y. Ding, C. N. Bowman. Nature
Communications 2018, 9, 2804-2814.
[20] X. Chen, M. A. Dam, O. Kanji, A. Mal, H. Shen, S. R. Nutt, K. Sheran, F.
Wudl. Science 2002, 295, 1698-1702.
[21] C. N. Bowman, C. J. Kloxin. Angew. Chem. 2012, 124, 4346-4348. C. N.
Bowman, C. J. Kloxin. Angew. Chem. Int. Ed. 2012, 51, 4272-4274.
[22] R. J. Wojtecki, M. A. Meador, S. J Rowan. Nature Materials 2011, 10,
14-27.
[23] W. Zou, J. Dong, Y. Luo, Q. Zhao, T. Xie. Advanced Materials 2017, 29,
1606100.
Unless otherwise stated, all reactions were conducted under inert
atmosphere (argon) using standard techniques for manipulating air-
sensitive compounds. All glassware was stored in an oven or was flame-
dried prior to establishing an argon atmosphere. The reagents were
purchased from Combi Blocks and Sigma Aldrich and used without any
further purification. The polymerization solvents were purified by drying
columns and freeze-pump-thaw technique. 1) 4-vinylphenylboronic acid
(10,0g, 67.6 mmol) and pinacol (8.03g, 68.0 mmol) as well as 0.05 mL
distilled water were stirred in THF (100 mL) at room temperature for 30
min. Then 2 g of anhydrous magnesium sulfate were added to the solution
and stirred at room temperature for 2 h. The mixture was filtered and
volatiles were removed under vacuum to yield a clear yellow oil. Yield:
14.7g, 95% with 0.9 mol% of residual pinacol, see SI. Fig.S1. 2) 4-
vinylphenylboronic acid, pinacol ester (3.8 g, 16 mmol) and benzoyl
peroxide (0.02 eq, 0.33 mmol, 80 mg) were introduced in a Schlenk vessel
with 3.8 mL toluene (degassed by three freeze-pump-thawing cycles). The
polymerization was conducted at 70°C during 72h. Then, the reaction
media was precipitated in pentane and the solid was obtained by filtration
and dried under vacuum for one night. The polymer was obtained as a
white powder. Yield: 87%. In order to minimize any residual functionality
in the final polymer, we used benzoyl peroxide (BPO) as a nitrogen-free
initiator (Figure 1; see sections 2, 3 and 4 of Supporting Information for
further details & characterization).
[24] O. R. Cromwell, J. Chung, Z. Guan. Journal of the American Chemical
Society 2015, 137, 6492-6495.
[25] M. Röttger, T. Domenech, R. van der Weegen, A. Breuillac, R. Nicolaÿ,
L. Leibler. Science 2017, 356, 62-65.
[26] R. G. Ricarte, F. Tournilhac, L. Leibler. Macromolecules 2018, 52, 432-
443.
[27] F. Caffy, R. Nicolaÿ. Polymer Chemistry 2019, in press.
[28] D. Kyriacos, in Brydson's Plastics Materials (8th Edition), (Ed.: M. Gilbert),
Butterworth-Heinemann, 2017, pp. 545-615.
[29] T. Kaiser. Progress in Polymer Science 1989, 14, 373-450.
[30] T. Liu, C. Hao, S. Zhang, X. Yang, L. Wang, J. Han, Y. Li, J. Xin, J. Zhang.
Macromolecules 2018, 51, 5577-5585.
[31] Y. Qin, V. Sukul, D. Pagakos, C. Cui, F. Jäkle. Macromolecules 2005, 38,
8987-8990.
[32] Y. Qin, D. Cheng, O. Achara, K. Parab, F. Jäkle. Macromolecules 2004,
19, 7123-7131.
[33] R. L. Letsinger, S. B. Hamilton. Journal of the American Chemical
Society 1959, 81, 3009-3012.
[34] M. Capelot, M. M. Unterlass, F.Tournilhac, L. Leibler. ACS Macro Letters
2012, 1, 789-792.
[35] D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calvé, B. Alonso, J.-O.
Durand, B. Bujoli, Z. Gan, G. Hoatson. Magnetic Resonance Chemistry
2002, 40, 70-76.
[36] S.-W. Oh, J. W. E. Weiss, P. A. Kerneghan, I. Korobkov, K. E. Malyb, D.
L. Bryce. Magnetic Resonance Chemistry 2012, 50, 388–401.
[37] Y.-T. A. Wong, D. L. Bryce in Annual Reports on NMR Spectroscopy, Vol.
93, (Eds.: G. Webb), Academic Press, 2018, pp. 213-279.
[38] S. Penczek, A. Duda, K. Kaluzynski, G. Lapienis, A. Nyk, R. Szymanski.
Macromolecular Symposia 1993, 73, 91-101.
Acknowledgements
J.B. thanks the University of Claude Bernard Lyon 1 for funding.
D.M. and J.R. gratefully thank the ANR for funding (grants ANR-
17-CE07-0006 and ANR-15-CE06-0001, respectively). L. P.
thanks the CCIR of ICBMS and P2CHP of Universitꢀ Lyon 1 for
providing computational resources and technical support. The
authors thank A. Baudouin and D. Gajan respectively for liquid-
and solid-state NMR spectroscopy, K. Szeto for DRIFT
experiments, and the SEC characterization platform of the LPSE.
[39] S. Strandman, J. E. Gautrot, X. X. Zhu. Polymer Chemistry 2011, 2, 791-
799.
Keywords: boron chemistry • organoboron polymers • high
glass-transition temperature • dynamic networks • reversible
crosslinking
This article is protected by copyright. All rights reserved.