Paper
Catalysis Science & Technology
been developed using the EISA approach. This procedure
does not require either rigorously controlled reaction condi-
tions or special handling, which makes it safe, cheap and
sustainable. Coupled with the use of acac as a Ti modificator,
the EISA methodology enables control of the Ti active center
state to favour the formation of Ti dimers or small oligomers
on the catalyst surface. The presence of such centers ensures
highly selective formation of p-benzoquinones during the
V. V. Kriventsov and Z. Olejniczak, Appl. Catal., A, 2004,
273, 47.
7 O. A. Kholdeeva, O. V. Zalomaeva, A. N. Shmakov, M. S. Melgunov
and A. B. Sorokin, J. Catal., 2005, 236, 62.
8 O. A. Kholdeeva, M. S. Mel'gunov, A. N. Shmakov, N. N. Trukhan,
V. V. Kriventsov, V. I. Zaikovskii, M. E. Malyshev and
V. N. Romannikov, Catal. Today, 2004, 91–92, 205.
9 A. Tuel and L. G. Hubert-Pfalzgraf, J. Catal., 2003, 217, 343.
10 (a) O. A. Kholdeeva, I. D. Ivanchikova, M. Guidotti and
N. Ravasio, Green Chem., 2007, 9, 731; (b) O. A. Kholdeeva,
I. D. Ivanchikova, M. Guidotti, N. Ravasio, M. Sgobba
and M. V. Barmatova, Catal. Today, 2009, 141, 330;
(c) O. A. Kholdeeva, I. D. Ivanchikova, M. Guidotti,
C. Pirovano, N. Ravasio, M. V. Barmatova and Y. A. Chesalov,
Adv. Synth. Catal., 2009, 351, 1877; (d) C. Pirovano,
M. Guidotti, V. Dal Santo, R. Psaro, O. A. Kholdeeva and
I. D. Ivanchikova, Catal. Today, 2012, 197, 170.
2 2
H O -based oxidation of alkylphenols. The materials pre-
pared by the EISA technique behave as true heterogeneous
catalysts, do not suffer from titanium leaching and can
be easily recovered and reused without loss of their catalytic
properties. Although some agglomeration of TiO2 clusters
occurs on the surface due to the negative action of aqueous
2 2
H O , this process is significantly slower for the EISA-based
materials than for Ti,Si-catalysts prepared by other methods,
e.g., sol–gel TiO –SiO mixed oxides, grafted Ti/SiO or Ti-MCM-41
2
2
2
like mesostructures. Further studies are in progress to under-
stand the reasons behind the higher stability of the catalysts
prepared by the EISA methodology.
11 (a) M. Ogawa, J. Am. Chem. Soc., 1994, 116, 7941; (b) M. Ogawa,
Chem. Commun., 1996, 1149.
12 (a) Y. Lu, R. Ganguli, C. A. Drewien, M. T. Anderson,
C. J. Brinker, W. Gong, Y. X. Guo, H. Soyez, B. Dunn,
M. H. Huang and J. I. Zink, Nature, 1997, 389, 364; (b) K. Yu,
A. J. Hurd, A. Eisenberg and C. J. Brinker, Langmuir, 2001,
Acknowledgements
1
7, 7961.
The authors thank Dr. Y. A. Chesalov and A. N. Serkova for
the Raman and SEM measurements, respectively. This work
was partially supported by the Russian Foundation for Basic
Research (grant no. 13-03-92699).
13 P. J. Bruinsma, A. Y. Kim, J. Liu and S. Baskaran, Chem. Mater.,
1997, 9, 2507.
14 H. Yang, N. Coombs and G. A. Ozin, J. Mater. Chem., 1998,
8, 1205.
1
5 M. Ogawa and N. Masukawa, Microporous Mesoporous Mater.,
000, 38, 35.
6 D. Zhao, P. Yang, B. F. Chmelka and G. D. Stucky, Chem. Mater.,
999, 11, 1174.
2
1
Notes and references
1
1
(a) P. Schudel, H. Mayer and O. Isler, in The Vitamins,
ed. W. H. Sebrell and R. S. Harris, Academic, New York,
17 S. Besson, T. Gacoin, C. Jacquiod, C. Ricolleau, D. Babonneau
and J.-P. Boilot, J. Mater. Chem., 2000, 10, 1331.
18 P. Innocenzi, L. Malfatti, T. Kidchob and P. Falcaro, Chem. Mater.,
2009, 21, 2555.
19 C. J. Brinker, Y. Lu, A. Sellinger and H. Fan, Adv. Mater.,
1999, 11, 579.
20 (a) P. Yang, D. Zhao, D. I. Margolese, B. F. Schmelka and
G. D. Stucky, Nature, 1998, 396, 152; (b) P. Yang, D. Zhao,
D. I. Margolese, B. F. Chmelka and G. D. Stucky, Chem. Mater.,
1999, 11, 2813; (c) L. Chen, B. Yao, Y. Cao and K. Fan, J. Phys.
Chem. C, 2007, 111, 11849.
21 M. Ogawa, K. Ikeue and M. Anpo, Chem. Mater., 2001,
13, 2900.
22 Z.-L. Hua, J.-L. Shi, W.-H. Zhang and W.-M. Huang, Mater. Lett.,
2002, 53, 299.
23 N. Hüsing, B. Launay, D. Doshi and G. Kickelbick, Chem. Mater.,
2002, 14, 2429.
24 (a) B. Notari, Adv. Catal., 1996, 41, 253; (b) P. Ratnasamy,
D. Srinivas and H. Knozinger, Adv. Catal., 2004, 48, 1.
25 V. B. Fenelonov, V. N. Romannikov and A. Y. Derevyankin,
Microporous Mesoporous Mater., 1999, 28, 57.
1
972, vol. 5, pp. 168–317; (b) W. Bonrath and T. Netscher,
Appl. Catal., A, 2005, 280, 55; (c) O. A. Kholdeeva, O. V. Zalomaeva,
A. B. Sorokin, I. D. Ivanchikova, C. Della Pina and M. Rossi,
Catal. Today, 2007, 121, 58; (d) M. Eggersdorfer, D. Laudert,
U. Letinois, T. McClymont, J. Medlock, T. Netscher and
W. Bonrath, Angew. Chem., Int. Ed., 2012, 51, 12960.
(a) M. G. Clerici, in Fine Chemicals through Heterogeneous
Catalysis, ed. R. A. Sheldon and H. van Bekkum, Wiley,
Weinheim, 2001, pp. 538–551; (b) U. Romano and M. Ricci, in
Liquid Phase Oxidation via Heterogeneous Catalysis: Organic
Synthesis and Industrial Applications, ed. M. G. Clerici and
O. A. Kholdeeva, Wiley, New Jersy, 2013, pp. 451–462.
2
3
4
(a) P. T. Tanev, M. Chibwe and T. J. Pinnavaia, Nature, 1994,
368, 321; (b) W. Zhang, M. Fröba, J. Wang, P. T. Tanev, J. Wong
and T. J. Pinnavaia, J. Am. Chem. Soc., 1996, 118, 9164.
N. N. Trukhan, V. N. Romannikov, E. A. Paukshtis,
A. N. Shmakov and O. A. Kholdeeva, J. Catal., 2001, 202, 110.
A. Sorokin and A. Tuel, Catal. Today, 2000, 57, 45.
(a) O. A. Kholdeeva, N. N. Trukhan, M. P. Vanina,
V. N. Romannikov, V. N. Parmon, J. Mrowiec-Bialon and
A. B. Jarzebski, Catal. Today, 2002, 75, 203; (b) J. Mrowiec-Białoń,
A. B. Jarzębski, O. A. Kholdeeva, N. N. Trukhan, V. I. Zaikovskii,
5
6
26 (a) M. V. Landau, in Handbook of Heterogeneous Catalysis,
ed. G. Ertl, H. Knözinger, F. Schüth and J. Weitkamp, Wiley-
VCH, Weinheim, 2008, pp. 119–160; (b) R. Hutter, T. Mallat,
206 | Catal. Sci. Technol., 2014, 4, 200–207
This journal is © The Royal Society of Chemistry 2014