Month 2017
Synthesis of Nitro, Dinitro, and Polynitroalkylamino Derivatives of
Trifurazanoxide is Presented
1
4
-Amino-1,2,5-oxadiazole-3yl-4-nitro-1,2,5-oxadiazole-4yl-
decomposition onset): 168°C. H-NMR (acetone-d6):
5.48 (d, J = 8.0 Hz, 2H), 5.58 (d, J = 8.0 Hz, 2H), 6.74
(br t, J = 8.0 Hz, 1H), 6.94 (br t, J = 8.0 Hz, 1H).
1
,2,5-oxadiazole-N-oxide and its isomer (6 and 7).
WO .2H O (0.69 g, 2.1 mmol) was added to a
suspension of DAFF (0.48 g, 1.9 mmol) in 10 mL of
0% H O equipped with a thermocouple and magnetic
Na2
4
2
13
C-NMR (acetone-d ): 48.99, 49.21, 105.33, 126.86,
6
132.73, 134.00, 136.91, 147.26, 156.22, and 157.06.
9
2
2
stirring bead over a period of several minutes while
maintaining the temperature at 15–20°C. The reaction
mixture was sonicated for 3.5 h, and the aqueous
solution was extracted with 30 mL of ethyl acetate. The
ethyl acetate solution was washed with water
Anal. Calcd. for C H N O : C, 20.77; H, 1.05; N,
33.91. Found: C, 20.82; H, 1.03; N 33.98.
10 6 14 16
REFERENCES AND NOTES
(
1 × 25 mL) and brine (1 × 25 mL), dried over MgSO4,
and evaporated to dryness. The crude product thus
obtained was passed through a short silica gel column
by using methylene chloride–heptane (3:7) solvent
[1] (a) Yin, P.; Zhang, Q.; Shreeve, J. M. Acc Chem Res 2016, 49,
; (b) Sabatini, J. J.; Oyler, K. D. Crystals 2016, 6, 5; (c) Brinck, T.Green
4
Energetic Materials; John Wiley & Sons: West Sussex, England, 2014; (d)
Klapotke, T. M.Chemistry of High-Energy Materials, 2nd ed.; Walter de
Gruyter: Berlin, 2012; (e) Klapotke, T. M. In New Nitrogen-Rich High
Explosives in Structure and Bonding: High Energy Density
MaterialsMingos, D. M. P. Ed.; Springer: New York, 2007; Vol 125,
pp. 85–121; (f) Singh, R. P.; Gao, H.; Meshri, T. D.; Shreeve, J. M. In
Nitrogen-Rich Heterocycles in Structure and Bonding: High-Energy
Density MaterialsMingos, D. M. P. Ed.; Springer: New York, 2007;
Vol 125, pp. 35–83; (g) Klapötke, T. M.; Stierstorfer, J. Eur J Inorg Chem
008, 26, 4055; (h) Fischer, N.; Klapotke, T. M.; Scheutzow, V.;
Stierstorfer, J. Cent Eur J Energ Mater 2008, 5, 3; (i) Gao, H.; Huang,
Y.; Ye, V.; Twamley, B.; Shreeve, J. M. Chem A Eur J 2008, 14, 5596;
j) Joo, Y. H.; Shreeve, J. M. Angew Chem Int Ed 2009, 48(3), 564;
k) Fendt, T.; Fischer, N.; Klapötke, T. M.; Stierstorfer, J. Inorg Chem
system. The relevant fractions (TLC with an R value of
f
0
.64 in 40% ethyl acetate–heptanes) were combined and
evaporated to yield product 7 as a white solid. Yield:
7 mg (6.9%); mp 115.8°C. DSC decomposition (5°C/min,
3
1
decomposition peak): 233.5°C H-NMR (acetone-d6):
13
6
.07 (s, 2H). C-NMR (acetone-d ): 108.73, 134.50,
6
2
1
40.74, 143.94, 156.48, 160.97(t). Anal. Calcd. for
C H N O : C, 25.54; H, 0.71; N, 39.72. Found: C, 25.96;
6
2 8 6
(
(
H, 0.68; N 38.76.
Further elution of the column and evaporation of the
2011, 50, 1447; (l) Fischer, N.; Klapotke, T. M.; Stierstorfer, J. Z. Z
Anorg Allg Chem 2011, 637, 1273; (m) Fischer, N.; Klapotke, T. M.;
Stierstorfer, J.; Wiedemann, C. Polyhedron 2011, 30, 2374; (n) Fischer,
N.; Klapotke, T. M.; Stierstorfer, J. Eur J Inorg Chem 2011, 28, 4471;
(o) Moderhack, D. Heterocycles 2011, 83; (p) Fischer, N.; Klapotke,
T. M.; Piercey, D.; Stierstorfer, J. Z. Z Anorg Allg Chem 2012, 638, 302;
relevant fractions (TLC with an R value of 0.59 in 40%
f
ethyl acetate–heptanes) to dryness provided product 6 as
a white solid. Yield: 45 mg (8.4%). mp (by DSC). 107°C
8
(
lit. 106°C). DSC (5°C/min, decomposition peak): 247°
(q) Nair, U. R.; Asthana, S. N.; Rao, A. S.; Gandhe, B. R. Def Sci J
1
13
C; H-NMR (acetone-d ): 6.27 (s, 2H);
C-NMR
6
2010, 60, 137; (r) Agrawal, J. P.; Hodgson, R. D.Organic Chemistry of
Explosives; John Wiley & Sons Ltd.: USA, 2007; (s) Gao, H.;
Shreeve, J. M. Chem Rev 2011, 111, 7377; (t) Iszak, D.; Klapotke,
T. M. Crystals 2012, 2, 294.
(
1
0
acetone-d ): 102.48, 137.11, 138.40, 147.19, 156.06,
6
61.08 (t). Anal. Calcd. for C H N O : C, 25.54; H,
6 2 8 6
.71; N, 39.72. Found: C, 25.96; H, 0.68; N, 38.76.
[2] (a) Coburn, M. D. J Heterocyclic Chem 1968, 83, 5; (b) Willar,
3
8).
,4-bis[3-(2,2,2-trinitroethyl)aminofurazan-4-yl]furoxan
R.; Moore, D. W. J Org Chem 1985, 50, 5123; (c) Shremetev, A. B., Ross.
Khim. Zhurn., 1997, 41, 43; (d) Shremetev, A. B.; Kulagina, V. O.;
Aleksandrova, D. E.; Strelenko, Y. A. Prop Explosives and pyrotech
(
Formaldehyde (500 mg, 37% aq. solution) was
added to a cooled (10°C) solution of nitroform (3.0 gm,
0% aq. solution) dropwise. The reaction mixture was
stirred at room temperature for 1 h. Then, a solution of
the substrate DAFF (3, 224 mg, 0.88 mmol) in dioxane
3 mL) combined with sodium acetate (500 mg,
1998, 23, 142; (e) Lukyanov, O. A.; Pokhvisneva, G. V.; Ternikova, T. V.
3
Russ Chem Bull, Intl Ed 2012, 61, 1783; (f) Zhang, J.; Shreeve, J. M.
J Am Chem Soc 2014, 136, 4437; (g) Hiskey, M. A.; Chavez, D. E.;
Bishop, R. L.; Kramer, J. F.; Kinkead, S. A. U S Patent 6,358,339B1,
March 19, 2002; (h) Bashir-Hashemi, A.; Baum, K. U. S. Patent
6,388,087B1, May 14, 2002; (i) Hiskey, M. A.; Chavez, D. E.; Bishop,
R. L.; Kramer, J. F.; Kinkead, S. A. U. S. Patent 6,552,201B2, April
(
6
.09 mmol) in water (1 mL) was added in one portion.
22, 2003; (j) Wei, H.; He, C.; Zhang, J.; Shreeve, J. M. Angew Chem
The resulting reaction mixture was heated in an oil bath
at 58°C for 2 h. The reaction mixture was diluted with
water (25 mL) and extracted with ethyl acetate
4 × 25 mL). The combined yellow organic layer was
sequentially washed with water (2 × 50 mL) and brine
1 × 50 mL). The organic layer was dried over Na SO ,
filtered, and evaporated under vacuum to yield a yellow
syrupy liquid. This liquid was subjected to column
chromatography (Si-gel, 10–20% ethyl acetate–hexanes).
The relevant fractions were concentrated to yield pure
product 7 (78 mg, 15%) as a white solid. A crystalline
sample of 7 for single crystal X-ray analysis was
obtained from chloroform–ethyl acetate (1:1) solvent
recrystallization. mp 159–160°C; DSC (5°C/min,
Int Ed 2015, 54, 9367; (k) Tang, Y.; Zhang, J.; Mitchell, L. A.; Parrish,
D. A.; Shreeve, J. M. J Am Chem Soc 2015, 137, 15984; (l)
Gunasekaran, A.; Trudell, M. L.; Boyer, J. H. Heteroat Chem 1994441;
(m) Pagoria, P. F.; Zhang, M. X.; U. S. Patent 8,580,054B2, May 14,
(
2013; (n) Zhou, Y.; Xu, K.; Wang, B.; Zhang, H.; Qiu, Q.; Zhao, F. Bull
Kor Chem Soc 2012, 33, 3317; (o) Pagoria, P.; Hope, M.; Lee, G.;
Mitchell, A.; Leonard, P. “Green” energetic materials synthesis at LLNL.
In Proceedings of the 15th International Seminar New Trends in Research
of Energetic Materials (NTREM), Pardubice, Czech Republic, April
2012, pp. 54–64; (p) Zhou, Y.; Xu, K.; Wang, B.; Zhang, H.; Qiu, Q.;
Zhao, F. Propellants Explos Pyrotech 2015, 40, 9; (q) PagoriaP.; Zhang,
M.; Racoveanu, A.; DeHope, A.; Tsyshevsky, R.; Kuklja, M. M.
Molbank, 2014, M824, 1; (r) Dehope, A.; Pagoria, P. F.; Parrish, D.;
New polynitro alkylamino furazans. Proceedings of the 15th International
Seminar New Trends in Research of Energetic Materials (NTREM),
Pardubice, Czech Republic, March 7, 2013, pp. 54–64; (s) Chavez, D.;
Klapotke, T. M.; Parrish, D.; Pieercey, D. G.; Stierstofer, J. Prop
Explosives and pyrotech 2014, 39, 641.
(
2
4
Journal of Heterocyclic Chemistry
DOI 10.1002/jhet