LETTER
Synthesis of Tetrahydroquinolines and Julolidines
1901
R1
Delpon, D.; Bégué, J.-P. Tetrahedron Lett. 2003, 44, 217.
(c) Di Salvo, A.; Spanedda, M. V.; Ourévitch, M.; Crousse,
B.; Bonnet-Delpon, D. Synthesis 2003, 2231. (d) Magueur,
G.; Crousse, B.; Ourévitch, M.; Bégué, J.-P.; Bonnet-
Delpon, D. J. Org. Chem. 2003, 68, 9763.
1. PhNH2
TFE, r.t., 1.5 h
N
R1CHO
+
R2
R3
R2
2. 35% aq HCHO
R3
1 h
TFE has already been used as a superior solvent in other
MCR’s: (e) Park, S. J.; Keum, G.; Kang, S. B.; Koh, H. Y.;
Kim, Y.; Lee, D. H. Tetrahedron Lett. 1998, 39, 7109.
(f) Cristau, P.; Vors, J.-P.; Zhu, J. Org. Lett 2001, 3, 4079.
(4) Reviews on fluorous alcohols: (a) Bégué, J.-P.; Bonnet-
Delpon, D.; Crousse, B. Synlett 2004, 18. (b) Bégué, J.-P.;
Bonnet-Delpon, D.; Crousse, B. In Handbook of Fluorous
Chemistry; Gladysz, J. A.; Curran, D. P.; Horvath, I. T.,
Eds.; Wiley-VCH: Weinheim, 2004, 341.
i-Pr
i-Pr
N
N
O
EtO
OEt
OEt
2 (72%)
3 (35%)
(5) In the presence of styrene or N-vinyl pyrrolidine as
dienophile, no reaction occurred over 24 h, while the alkyl
aldimine decomposed in the medium.
n-C5H11
N
(6) Typical Procedure for the Synthesis of cis-4-Ethoxy-
1,2,3,4-tetrahydro-2-isopropylquinoline (1b).
EtO
OEt
Isobutyraldehyde (1.2 mmol, 86 mg) and ethyl vinyl ether
(1.2 mmol, 86 mg) were dissolved in TFE (1 mL) in a 5 mL
test tube. A solution of aniline (1 mmol, 93 mg) in TFE (1
mL) was then slowly added over 15 min to the previous
mixture under stirring. After stirring for 2 h, the solvent was
evaporated in vacuo. The crude product was then purified by
chromatography on florisil (cyclohexane–EtOAc, 9:1) to
afford 1b as yellow crystals (171 mg, 78%); mp 74–76 °C.
1H NMR (300 MHz, CDCl3): d = 1.02 (d, 3 H, J = 6.7 Hz),
1.03 (d, 3 H, J = 6.7 Hz), 1.33 (t, 3 H, J = 7.0 Hz), 1.75 (m,
2 H), 2.24 (ddd, 1 H, J = 2.5, 5.5, 12.1 Hz), 3.23 (ddd, 1 H,
J = 2.5, 5.3, 11.2 Hz), 3.63 (m, 1 H), 3.79 (m, 1 H), 4.68 (dd,
1 H, J = 5.6, 10.2 Hz), 6.51 (d, 1 H, J = 7.8 Hz), 6.71 (t, 1 H,
J = 7.4 Hz), 7.04 (t, 1 H, J = 7.6 Hz), 7.36 (d, 1 H, J = 7.6
Hz), NH not observed. 13C NMR (300 MHz, CDCl3):
d = 15.6, 18.0, 18.3, 30.3, 32.4, 56.1, 63.4, 74.1, 113.8,
117.1, 122.8, 126.9, 127.91, 144.6. Anal. Calcd for
C14H21NO (219.32): C, 76.67; H, 9.65; N, 6.39. Found: C,
76.33; H, 9.99; N, 6.35.
4 (80%)
Scheme 2
of four reaction steps, a 35% yield means more than 75%
yield per step. Concerning the relative configuration of
the julolidines, the last reaction step always afforded a sin-
gle stereomer, which had the groups in 3- and 7-positions
of the cis-configuration.13
In conclusion, we have reported a useful method to syn-
thesize tetrahydroquinolines with alkyl substituents in the
position 3 through three-component Povarov reaction, by
using TFE as solvent. Such compounds are still challeng-
ing to synthesize by this path. In the presence of aqueous
formaldehyde and of a dienophile these tetrahydroquino-
lines undergo a second reaction in the pot to yield new
cis,cis-trisubstituted julolidines as major isomers. The
reaction conditions are mild (no catalyst) and very simple
to implement.
(7) (a) Grieco, P. A.; Bahsas, A. Tetrahedron Lett. 1988, 29,
5855. (b) See also: Mellor, J. M.; Derryman, G. D.
Tetrahedron 1995, 21, 6115.
(8) Haidekker, M. A.; Brady, T. P.; Lichlyter, D.; Theodorakis,
E. A. Bioorg. Chem. 2005, 33, 415; and references therein.
(9) Vejdelek, Z.; Protiva, M. Collect. Czech. Chem. Commun.
1990, 55, 1290.
(10) (a) Glass, D. B.; Weissberger, A. Org. Synth., Coll. Vol. III;
Wiley: New York, 1955, 504. (b) Katayama, H.; Abe, E.;
Kaneko, K. J. Heterocycl. Chem. 1982, 19, 925. See also:
(c) Palma, A.; Carrillo, C.; Stashenko, E.; Kouznetsov, V.;
Bahsas, A.; Amaro-Luis, J. Tetrahedron Lett. 2001, 42,
6247. (d) Palma, A.; Agredo, J. S.; Carrillo, C.; Kouznetsov,
V.; Stashenko, E.; Bahsas, A.; Amaro-Luis, J. Tetrahedron
2002, 58, 8719.
References and Notes
(1) (a) Multicomponent Reactions; Zhu, J.; Bienaymé, H., Eds.;
Wiley-VCH: Weinheim, 2005. (b) Orru, R. V. A.; de Greef,
M. Synthesis 2003, 1471. (c) Bienaymé, H.; Hulme, C.;
Oddon, G.; Schmitt, P. Chem. Eur. J. 2000, 6, 3321.
(2) For leading references, see: (a) Povarov, L. S.; Makhailov,
B. M. Izv. Akad. Nauk. SSSR 1963, 955. (b) Narasaka, K.;
Shibata, T. Heterocycles 1993, 35, 1039. (c) Kobayashi, S.;
Nagayama, S. J. Am. Chem. Soc. 1996, 118, 8977.
(d) Crousse, B.; Bégué, J.-P.; Bonnet-Delpon, D. J. Org.
Chem. 2000, 65, 5009. (e) Cheng, D.; Zhou, J.; Saiah, E.;
Beaton, G. Org. Lett. 2002, 4, 4411. (f) Zhou, Y.; Jia, X.;
Li, R.; Liu, Z.; Liu, Z.; Wu, L. Tetrahedron Lett. 2005, 46,
8937. (g) Lin, X.-F.; Cui, S.-L.; Wang, Y.-G. Tetrahedron
Lett. 2006, 47, 3127. (h) See also: Jiménez, O.; de la Rosa,
G.; Lavilla, R. Angew. Chem. Int. Ed. 2005, 44, 6521.
(3) For some representative examples of the use of fluorous
alcohols in organic synthesis, see: (a) Ravikumar, K. S.;
Kesavan, V.; Crousse, B.; Bonnet-Delpon, D.; Bégué, J.-P.
Organic Syntheses, Vol. 80; Wiley: New York, 2003, 184.
(b) Spanedda, M. V.; Hoang, V. D.; Crousse, B.; Bonnet-
(11) (a) Katritzky, A. R.; Rachwal, B.; Rachwal, S. J. Org. Chem.
1996, 61, 3117. (b) Katritzky, A. R.; Luo, Z.; Cui, X.-L. J.
Org. Chem. 1999, 64, 3328.
(12) Typical Procedure for the Synthesis of cis,cis-1,7-
Diethoxy-3-isopropyljulolidine (2).
Isobutyraldehyde (1.2 mmol, 103 mg) and ethyl vinyl ether
(1.2 mmol, 86 mg) were dissolved in TFE (0.5 mL) in a 5 mL
test tube. A solution of aniline (1 mmol, 93 mg) in TFE (0.5
mL) was then slowly added over 15 min to the previous
mixture under stirring. After stirring for 2 h, a solution of
formaldehyde (35% aq; 2 mmol, 172 mg) and ethyl vinyl
ether (1.2 mmol, 86 mg) in TFE (1 mL) was added to the
reaction mixture. After further stirring for 1 h, the solvent
was evaporated in vacuo. The crude product was then
Synlett 2006, No. 12, 1899–1902 © Thieme Stuttgart · New York