10.1002/cctc.202000618
ChemCatChem
FULL PAPER
[12] a) J. P. Vistuba, M. Piovezan, M. G. Pizzolatti, A. M. Rebelo, M. S.
Azevedo, L. Vitali, A. C. Costa and G. Amadeu Micke, J. Chromatogr. A
2013, 1274, 159-164; b) W. Schafer, H. Wang and C. J. Welch, J. Sep.
Sci. 2016, 39, 2978-2985.
[13] L. Silvestro, I. Tarcomnicu and S. R. Savu in Matrix effects in mass
spectrometry combined with separation methods—comparison HPLC,
GC and discussion on methods to control these effects, IntechOpen,
2013.
solution were shaken for additional 20 min at 300 rpm. After
centrifugation (3000 x g, 5 min, 10 °C), 300 µl of the organic layer
was transferred to a glass coated plate for GC analysis.
Split-GFP assay. Protein normalisation was performed
employing the principle of a split GFP normalisation assay as
described by Santos-Aberturas et al.[24b] with slight modifications.
The complementation fragment sfGFP 1-10 was cloned into the
Golden Mutagenesis plasmid pAGM22082_cRed2 for T7
promoter controlled expression in E.coli. For measurement 20 µl
of yeast expression supernatant was transferred to a previously
BSA blocked 96 well Nunc MaxiSorp Fluorescence plate
(ThermoFisherScientific, Waltham, US) and 180 µl of sfGFP 1-
10 inclusion body preparation added. Immediate fluorescence
values (GFP fluorophore: excitation wavelength: 485 nm;
emission wavelength: 535 nm; top read mode) was measured
using a 96 well plate fluorescence reader (TECAN, Grödig, AT).
After storage over two nights (at 4 °C) final fluorescence values
were measured. Protein quantities were then normalised based
on the relative fluorescence increase (differential values) and in
comparison to the empty plasmid backbone.
[14] M. J. Weissenborn and R. M. Koenigs, ChemCatChem 2020, 12, 2171-
2179.
[15] M. J. Weissenborn, S. A. Low, N. Borlinghaus, M. Kuhn, S. Kummer, F.
Rami, B. Plietker and B. Hauer, ChemCatChem 2016, 8, 1636-1640.
[16] K. J. Hock, A. Knorrscheidt, R. Hommelsheim, J. M. Ho, M. J.
Weissenborn and R. M. Koenigs, Angew. Chem. Int. Ed. 2019, 58, 3630-
3634.
[17] a) K. Chen, S. Q. Zhang, O. F. Brandenberg, X. Hong and F. H. Arnold,
J. Am. Chem. Soc. 2018, 140, 16402-16407; b) T. Hayashi, M. Tinzl, T.
Mori, U. Krengel, J. Proppe, J. Soetbeer, D. Klose, G. Jeschke, M. Reiher
and D. Hilvert, Nat. Catal. 2018, 1, 578-584; c) T. K. Hyster and F. H.
Arnold, Isr. J. Chem. 2015, 55, 14-20.
[18] P. Püllmann, C. Ulpinnis, S. Marillonnet, R. Gruetzner, S. Neumann and
M. J. Weissenborn, Sci. Rep. 2019, 9, 10932.
[19] Z. J. Wang, H. Renata, N. E. Peck, C. C. Farwell, P. S. Coelho and F. H.
Arnold, Angew. Chem. Int. Ed. 2014, 53, 6810-6813.
[20] E. J. Moore and R. Fasan, Tetrahedron Asymmetry 2019, 75, 2357-2363.
[21] a) R. Ullrich, J. Nuske, K. Scheibner, J. Spantzel and M. Hofrichter, Appl.
Environ. Microbiol. 2004, 70, 4575-4581; b) P. Molina-Espeja, E. Garcia-
Ruiz, D. Gonzalez-Perez, R. Ullrich, M. Hofrichter and M. Alcalde, Appl.
Environ. Microbiol. 2014, 80, 3496-3507; c) M. Faiza, S. F. Huang, D. M.
Lan and Y. H. Wang, BMS Evol. Biol. 2019, 19, 19; d) S. J. Willot, E.
Fernandez-Fueyo, F. Tieves, M. Pesic, M. Alcalde, I. Arends, C. B. Park
and F. Hollmann, ACS Catal. 2019, 9, 890-894.
[22] E. D. Babot, J. C. del Rio, L. Kalum, A. T. Martinez and A. Gutierrez,
Biotechnol. Bioeng. 2013, 110, 2323-2332.
[23] M. Ramirez-Escudero, P. Molina-Espeja, P. Gomez de Santos, M.
Hofrichter, J. Sanz-Aparicio and M. Alcalde, ACS Chem. Biol. 2018, 13,
3259-3268.
Acknowledgements
[24] a) S. Cabantous and G. S. Waldo, Nat Methods 2006, 3, 845-854; b) J.
Santos-Aberturas, M. Dorr, G. S. Waldo and U. T. Bornscheuer, Chem.
Biol. 2015, 22, 1406-1414.
[25] S. Kille, C. G. Acevedo-Rocha, L. P. Parra, Z. G. Zhang, D. J. Opperman,
M. T. Reetz and J. P. Acevedo, ACS Synth. Biol. 2013, 2, 83-92.
E.F. gratefully acknowledges the financial support by the
Ministerium für Innovation, Wissenschaft und Forschung des
Landes Nordrhein-Westfalen and M.J.W, A.K., E.S. and E.F
thank the Bundesministerium für Bildung und Forschung
(„Biotechnologie 2020+ Strukturvorhaben: Leibniz Research
Cluster“, 031A360B and 031A360E) for generous funding. P.P.
thanks the Landesgraduiertenförderung Sachsen-Anhalt for a
PhD scholarship.
The authors thank Miguel Alcalde (CSIC Madrid) and Dirk
Holtmann (DFI Frankfurt) for providing the peroxygenase genes
and Benjamin Jones for substantial support on Figure 1.
Keywords: High-throughput analytics • Biocatalysis • Carbene
transfer • Unspecific peroxygenase • Hydroxylation
[1]
[2]
[3]
[4]
K. D. Collins, T. Gensch and F. Glorius, Nat. Chem. 2014, 6, 859-871.
Z. J. Gartner and D. R. Liu, J. Am. Chem. Soc. 2001, 123, 6961-6963.
E. Engvall and P. Perlmann, Immunochemistry 1971, 8, 871-874.
J. R. Cabrera-Pardo, D. I. Chai, S. Liu, M. Mrksich and S. A. Kozmin, Nat.
Chem. 2013, 5, 423-427.
[5]
[6]
[7]
a) K. H. Shaughnessy, P. Kim and J. F. Hartwig, J. Am. Chem. Soc. 1999,
121, 2123-2132; b) A. C. Cooper, L. H. McAlexander, D.-H. Lee, M. T.
Torres and R. H. Crabtree, J. Am. Chem. Soc. 1998, 120, 9971-9972.
a) H. A. Bunzel, X. Garrabou, M. Pott and D. Hilvert, Curr. Opin. Struct.
Biol. 2018, 48, 149-156; b) P. Mair, F. Gielen and F. Hollfelder, Curr. Opin.
Chem.l Biol. 2017, 37, 137-144.
a) B. Sun, G. Miller, W. Y. Lee, K. Ho, M. A. Crowe and L. Partridge, J
Chromatogr. A 2013, 1271, 163-169; b) S. Kille, F. E. Zilly, J. P. Acevedo
and M. T. Reetz, Nat. Chem. 2011, 3, 738-743.
[8]
[9]
P. Boeker and J. Leppert, Anal. Chem. 2015, 87, 9033-9041.
K. Izawa, K. Furuta, T. Fujiwara and N. Suyama, Ind. Chim. Belge 1967,
32, 223-226.
[10] C. J. Welch, X. Y. Gong, W. Schafer, E. C. Pratt, T. Brkovic, Z. Pirzada,
J. F. Cuff and B. Kosjek, Tetrahedron Asymmetry 2010, 21, 1674-1681.
[11] a) K. Zawatzky, M. Biba, E. L. Regalado and C. J. Welch, J. Chromatogr.
A 2016, 1429, 374-379; b) C. J. Welch, E. L. Regalado, E. C. Welch, I.
M. K. Eckert and C. Kraml, Anal. Methods 2014, 6, 857-862; c) C. Welch,
E. Regalado, C. Kraml, E. Welch, M. Welch, H. Semmelhack, D.
Almstead, A. Kress, N. Hidalgo and M. Kress, LC GC N. Am. 2015, 33,
262-269.
7
This article is protected by copyright. All rights reserved.