10.1002/ejoc.201700356
European Journal of Organic Chemistry
COMMUNICATION
nitrogen atmosphere in order to allow Ullman intermediate to form.
Reaction vessel was uncapped and the reaction mixture was exposed to
atmospheric air. The heating was continued at 100 ºC for 8.5 h. Reaction
mixture was cooled to room temperature. Aqueous 5 % citric acid
solution (30 mL) and dichloromethane (30 mL) were added and resulting
mixture was stirred vigorously until fully soluble. Phases were separated
and the aqueous phase was extracted with dichloromethane (30 mL).
The combined organic phases were washed with brine, dried over
anhydrous sodium sulfate and solvents were evaporated yielding the
crude product as a yellow solid. The crude product was slurried with
refluxing ethyl acetate (10 mL) before being cooled to room temperature
and filtered. Product was dried in 40 °C vacuum oven to give 0.91 g
Giomini, P. Jones, U. Koch, J. M. Ontoria, M. C. Palumbi, M. Rowley,
C. Toniatti, E. Muraglia, Bioorg. Med. Chem. Lett. 2009, 19, 4196-4200.
e) S. Malancona, M. Donghi, M. Ferrara, J. I. M. Hernando, M. Pompei,
S. Pesci, Jesus M. Ontoria, U. Koch, M. Rowley, V. Summa, Bioorg.
Med. Chem. 2010, 18, 2836-2848. f) Y. Tong, T. D. Penning, A.
Florjancic, J. Ashiro, K. W. Woods (Abbott Laboratories), International
patent WO2012161812, 2012. g) S. Taliani, I. Pugliesi, E. Barresi, S.
Salerno, C. Marchand, K. Agama, F. Simorini, C. La Motta, A. M.
Marini, F. S. Di Leva,L. Marinelli, S. Cosconati, E. Novellino, Y.
Pommier, R. Di Santo, F. Da Settimo, J. Med. Chem. 2013, 56, 7458-
7462.
[2]
[3]
Reaxys database search done in August 2016. Cores structures of
compounds 3, 8 and 9 in Table 1 were also among the unknown
heterocycles. See supporting information for details.
1
(77 %) of heterocycle 1 as light yellow solids. H NMR (400MHz, CDCl3)
δ 8.74 (dd, J=1.8, 4.8 Hz, 1H), 8.66 (dd, J=1.9, 7.9 Hz, 1H), 7.85 (d,
J=1.8 Hz, 1H), 7.43 (dd, J=4.8, 7.9 Hz, 1H), 7.16 (d, J=1.8 Hz, 1H), 3.77
(s, 1H); 13C NMR (101MHz, CDCl3) δ 159.2, 153.9, 146.1, 143.0, 138.9,
128.8, 121.7, 112.4, 110.5, 29.7; HRMS (ESI-TOF) m/z calcd. for
C10H9N4O [M + H]+ 201.0776, found: 201.0755.
a) F. Ullmann, Chem. Ber. 1903, 36, 2382-2384. b) R. A. Altman, E. D.
Koval, S. L. Buchwald, J. Org. Chem. 2007, 72, 6190-6199. c) F.
Monnier, M. Taillefer, Angew. Chem. Int. Ed. 2009, 48, 6954-6971. d) C.
Sambiagio, S. P. Marsden, A. J. Blacker, P. C. McGowan, Chem. Soc.
Rev. 2014, 43, 3525-3550. e) P. Saha, T. Ramana, N. Purkait, M. A. Ali,
R. Paul, T. Punniyamurthy, J. Org. Chem. 2009, 74, 8719-8725. f) S.
Murru, B. K. Patel, J. Le Bras, J. Muzart, J. Org. Chem. 2009, 74, 2217-
2220.
A typical procedure for direct palladium catalyzed C-H arylation of
fused heterocycles (Table 2).
[4]
For reviews on C-H activation of heteroaryls, see: a) D. Albertico, M. E.
Scott, M. Lautens, Chem. Rev. 2007, 107, 174-238. b) F. Bellina, R.
Rossi, Tetrahedron 2009, 65, 10269-10310. c) L. Ackermann, R.
Vicente, A. Kapdi, Angew. Chem. Int. Ed. 2009, 48, 9792-9826. d) O.
Daugulis, H.-Q. Do, D. Shabashov, Acc. Chem. Res. 2009, 42, 1074-
1086. e) L. Ackermann, Chem. Rev. 2011, 111, 1315-1345. f) J.
Wencel-Delord, T. Dröge, F. Liu, F. Glorius, Chem. Soc. Rev. 2011, 40,
4740-4761. g) J. Yamaguchi, A. D. Yamaguchi, K. Itami, Angew. Chem.
Int. Ed. 2012, 51, 8960-9009. h) S. R. Neufeldt, M. S. Sanford, Acc.
Chem. Res. 2012, 45, 936-946. i) F. Shibahara, T. Murai, Asian J. Org.
Chem. 2013, 2, 624-636. j) S. I. Kozhushkov, H. K. Potukuchi, L.
Ackermann, Catal. Sci. Technol. 2013, 3, 562-571. k) R. Rossi, F.
Bellina, M. Lessi, C. Manzini, Adv. Synth. Catal. 2014, 356, 17-117. l) R.
Rossi, F. Bellina, M. Lessi, C. Manzini, L. A. Perego, Synthesis 2014,
46, 2833-2883. m) F. Roudesly, J. Oble, G. Poli, J. Mol. Catal. A: Chem.
2017, 426, 275-296.
6-Methyl-9-phenylimidazo[1,2-a]pyrido[3,2-e]pyrimi-din-5(6H)-one
(19).
A
pressure tube was charged with 6-methylimidazo[1,2-
a]pyrido[3,2-e]pyrimidin-5(6H)-one 1 (50 mg, 0.25 mmol), bromobenzene
(27 µL, 0.25 mmol), anhydrous potassium carbonate (52 mg, 1.5 mmol),
2-ethylhexanoic acid (4 µL, 0.050 mmol), palladium acetate (2.8 mg,
0.025 mmol) and xylene (1.5 mL). Air atmosphere was removed with
nitrogen flow and tricyclohexylphosphine (10.5 mg, 0.075 mmol) was
added, then tube was sealed. Reaction was allowed to stir at room
temperature for 5-15 minutes, then heated to 140 °C and mixed for 18
hours. Reaction was allowed to cool to room temperature, diluted with
dichloromethane (8 mL) and filtered through celite. Solvents were
evaporated under vacuum. Crude product was purified with reverse
phase (C18) column chromatography using 10-100 % MeCN / aqueous
0.1% NH4OH buffer to give 48 mg (70 %) of product 19 as yellow
crystalline solids. 1H NMR (400 MHz, CDCl3) δ 8.68 (dd, J=1.9, 7.8 Hz,
1H), 8.48 (dd, J=1.9, 4.7 Hz, 1H), 7.57 - 7.51 (m, 2H), 7.45 - 7.39 (m, 3H),
7.37 (dd, J=4.7, 7.8 Hz, 1H), 7.08 (s, 1H), 3.83 (s, 3H); 13C NMR (101
MHz, CDCl3) δ 159.1, 152.9, 147.5, 144.0, 138.7, 130.9, 130.2, 129.1,
128.8, 128.1, 127.7, 121.4, 112.7, 29.8; HRMS (ESI-TOF) m/z calcd. for
C16H13N4O [M + H]+ 277.1089, found: 277.1069.
[5]
For selected publications on direct palladium catalyzed C-H arylations
of heteroaryls with aryl halides, see: a) B. S. Lane, M. A. Brown, D.
Sames, J. Am. Chem. Soc. 2005, 127, 8050-8057. b) H. A. Chiong, O.
Daugulis, Org. Lett. 2007, 9, 1449-1451. c) F. Bellina, F. Benelli, R.
Rossi, J. Org. Chem. 2008, 73, 5529-5535. d) L. Ackermann, R.
Vicente, R. Born, Adv. Synth. Catal. 2008, 350, 741-748. e) J. Roger, H.
Doucet, Adv. Synth. Catal. 2009, 351, 1977-1990. f) J. Roger, H.
Doucet, Tetrahedron 2009, 65, 9772-9781. g) B. Liégault, I. Petrov, S. I.
Gorelsky, K. Fagnou, J. Org. Chem. 2010, 75, 1047-1060. h) S. A.
Ohnmacht, A. J. Culshaw, M. F. Greaney, Org. Lett. 2010, 12, 224-226.
i) J. M. Joo, B. B. Touré, D. Sames, J. Org. Chem. 2010, 75, 4911-4920.
j) S. I. Gorelsky, D. Laponte, K. Fagnou, J. Org. Chem. 2012, 77, 658-
668. k) L. Basolo, E. M. Becalli, E. Borsini, G. Broggini, S. Pellegrino,
Tetrahedron 2008, 64, 8182-8187. l) Y. Fall, C. Reynaud, H. Doucet, M.
Santelli, Eur. J. Org. Chem. 2009, 4041-4050. m) L. Basolo, E. M.
Becalli, E. Borsini, G. Broggini, Tetrahedron 2009, 65, 3486-3491. n) F.
Derridji, J. Roger, S. Djebbar, H. Doucet, Adv. Synth. Catal. 2012, 354,
747-750.
Acknowledgements
The research leading to these results has received funding from
the Innovative Medicines Initiative Joint Undertaking project
CHEM21 under grant agreement n°115360, resources of which
are composed of financial contribution from the European
Union’s Seventh Framework Programme (FP7/2007-2013) and
EFPIA companies’ in kind contribution.
Keywords: C-H activation • C-C coupling • Copper •
Heterocycles • Palladium
[6]
For recent reviews on copper catalyzed oxidative heterocycle
formations, see: a) A. E. Wendlandt, A. M. Suess, S. S. Stahl, Angew.
Chem. Int. Ed. 2011, 50, 11062-11087. b) Z. Shi, C. Zhang, C. Tanga,
N. Jiao, Chem. Soc. Rev. 2012, 41, 3381-3430. c) S. Chiba, Bull. Chem.
Soc. Jpn. 2013, 86, 1400-1411. d) S. E. Allen, R. R. Walvoord, R.
Padilla-Salinas, M. C. Kozlowski, Chem. Rev. 2013, 113, 6234-6458. e)
X.-X. Guo, D.W. Gu, Z. Wu, W. Zhang, Chem. Rev. 2015, 115, 1622-
1651.
[1]
a) S. D. Barchéchath, R. I. Tawatao, M. Corr, D. A. Carson, H. B.
Cottam, J. Med. Chem. 2005, 48, 6409-6422. b) T. D. Penning, S. A.
Sheela, P. J. Hajduk, D. R. Sauer, K. Sarris, V. L. Giranda (Abbott
Laboratories), International patent WO2007149907, 2007. c) J. F.
Bereznak, D. M.-t. Chan, D. Geffken, M. A. Hanagan, E. G. Lepone, R.
J. Pasteris, S. L. Jr., Swann (E. I. du Pont de Nemours and Company),
International patent WO2008103357, 2008. d) F. Orvieto, D. Branca, C.
[7]
For selected examples of copper catalyzed oxidative heteroaryl
synthesis, see: a) H. Wang, Y. Wang, C. Peng, J. Zhang, Q. Zhu, J. Am.
This article is protected by copyright. All rights reserved.