M. Bonchio, M. Carraro, V. Conte, G. Scorrano
FULL PAPER
brown MnO2 precipitate was separated by centrifugation and the
solvent was removed under vacuum. The product was purified by
chromatography (column or preparative TLC), using ethyl acetate/
Supporting Information: UV/Vis spectra of uracil and of its oxi-
dation products (Figure S1); product evolution as a function of
time obtained for the W10 photocatalyzed oxidation (Figure S2);
zero-order kinetics as a function of PW12 concentration (Table S1
and Figure S4); fitting of the two-step oxidation kinetics of uracil
cis-diol by PW12, and Zn5W19 (Figures S4 and S5).
1
2-propanol/water = 75:16:9. H NMR ([D6]DMSO): δ = 10.05 (s,
1 H, 3-H), 8.13 (s, 1 H, 1-H), 6.09 (d, J = 4.1 Hz, 1 H, 6-OH), 5.48
(d, J = 6.2 Hz, 1 H, 5-OH), 4.62 (dd, J = 3.8, JЈ = 4.1 Hz, 1 H, 6-
H), 4.18 (dd, J = 6.2, JЈ = 3.8 Hz, 1 H, 5-H) ppm. 13C NMR ([D6]
DMSO): δ = 172.0, 153.1, 74.3, 69.0 ppm. Ret. time (Luna) = 7.9–
8.2Ј; Ret. time (Aqua) = 7.7–8.0Ј; Rf (Tollens) = 0.5.
Acknowledgments
Isodialuric Acid (6-Hydroxydihydropyrimidine-2,4,5-trione) (3):[53]
Br2 (550 mg, 3.50 mmol) in water (10 mL) was added whilst stirring
to a solution of isobarbituric acid (450 mg, 3.44 mmol) in water
(20 mL), maintained at 30 °C, until the solution remained orange.
The volume was reduced to 3.5 mL and an equivalent volume of
diluted H2SO4 was added. The mixture was concentrated to 2 mL
and then poured into an ice-water bath. The solid was filtered,
washed with cold water (5 mL), ethyl alcohol (10 mL) and ethyl
ether (10 mL). 1H NMR ([D6]DMSO): δ = 10.06 (s, 1 H, 3-H), 8.11
(d, J = 4.8 Hz, 1 H, 1-H), 6.75 (s, 1 H, 5-OH), 6.43 (s, 1 H, 5-OH),
5.89 (d, J = 4.0 Hz, 1 H, 6-OH), 4.34 (dd, J = 4.0, JЈ = 4.8 Hz, 1
H, 6-H) ppm, hydrated form. 13C NMR (D2O/rif. DMSO): δ =
132.7, 116.4, 50.9 ppm. Ret. time (Aqua, Luna) = 6.6–6.9Ј; Rf (Tol-
lens) = 0.7.
Alloxan (Pyrimidine-2,4,5,6-tetraone) (4 and 9): 1H NMR ([D6]-
DMSO): δ = 11.25 (s, 2H, 1-H and 3-H), 7.56 (s, broad, OH, tetra-
hydrate form) ppm. 13C NMR (D2O/ref. DMSO): δ = 170.7, 151.9,
86.2 ppm. MS (ESI+, CH3OH/H2O) m/z = 214 [M + 4H2O]+. Ret.
time (Luna) 9.0–11.1Ј; Ret. time (Aqua) = 8.7–8.8Ј; Rf (UV, Tollens)
= 1.1–1.2.
1-Formyl-5-hydroxyhydantoin (5):[35] Uracil cis-diol (150 mg,
1.03 mmol) was dissolved in water (65 mL) and reacted with so-
dium metaperiodate (0.1 m solution, 250 mL, 25 mmol). After a few
minutes at 30 °C, the mixture was carefully concentrated at 40 °C
and diluted with hot ethanol. The precipitated was removed from
the hot mixture and the solvent was removed under vacuum. The
product was purified by preparative TLC silica plate.1H NMR ([D6]
DMSO): δ = 11.71 (s, broad, 1 H, 3-H), 8.94 (s, 1 H, CHO), 7.53
(d, J = 6.8 Hz, 1 H, 5-OH), 5.47 (d, J = 6.8 Hz, 1 H, 5-H) ppm.
13C NMR ([D6]DMSO): δ = 171.3, 159.1, 154.4, 76.0 ppm. Ret.
time (Luna) = 28.2Ј; Ret. time (Aqua) = 12.1–12.4Ј; Rf (Tollens) =
1.6.
Financial support from the Italian National Research Council is
gratefully acknowledged.
[1] a) D. H. R. Barton, A. E. Martell, D. T. Sawyer, The Activation
of Dioxygen and Homogeneous Catalytic Oxidations Plenum
Press, New York, 1993; b) C. L. Hill, Nature 1999, 401, 436–;
c) A. Albini, M. Fagnoni, Chemisty Today 2004, 22, 36–38.
[2] a) E. L. Clennan, Tetrahedron 2000, 56, 9151–9179; b) A. Al-
bini, M. Fagnoni, Green Chem. 2004, 6, 1–6.
[3] M. Bonchio, T. Carofiglio, M. Carraro, R. Fornasier, U. Tonel-
lato, Org. Lett. 2002, 4, 4635–4637.
[4] B. Meunier, A. Sorokin, Acc. Chem. Res. 1997, 30, 470–476.
[5] O. Legrini, E. Oliveros, A. M. Braun, Chem. Rev. 1993, 93,
671–698.
[6] a) R. Bonnett, Chemical Aspects of Photodynamic Therapy
Gordon and Breach Science: Amsterdam, 2000; b) R. Bonnet,
G. Martinez, Tetrahedron 2001, 57, 9513–9547 and references
cited therein.
[7] C. L. Hill, C. M. Prosser-McCartha, in: Photosensitization and
Photocatalysis Using Inorganic and Organometallic Compounds
(Eds.: K. Kalyanasundaram, M. Grätzel), Kluwer Academic
Publishers: Dordrecht, The Netherlands, 1993, pp. 307–330.
[8] a) A. Hiskia, A. Mylonas, E. Papaconstantinou, Chem. Soc.,
Rev. 2001, 30, 62–69; b) E. Papaconstantinou, Chem. Soc., Rev.
1989, 18, 1–31.
[9] A. Maldotti, A. Molinari, R. Amadelli, Chem. Rev. 2002, 102,
3811–3836.
[10] M. A. Fox, R. Cardona, E. Gailard, J. Am. Chem. Soc. 1987,
109, 6347–6354.
[11] A. Hiskia, E. Papaconstantinou, Polyhedron 1988, 7, 477–481.
[12] M. Bonchio, M. Carraro, G. Scorrano, E. Fontananova, E.
Drioli, Adv. Synth. Catal. 2003, 345, 1119–1126.
[13] M. Bonchio, M. Carraro, G. Scorrano, A. Bagno, Adv. Synth.
Catal. 2004, 346, 648–654.
5-Hydroxyhydantoin (5-Hydroxyimidazolidine-2,4-dione) (6):[32c] Pa-
rabanic acid (100 mg, 0.88 mmol) was dissolved in water (10 mL)
and reacted with a solution of NaBH4 (16.6 mg) prepared in water
(100 μL) with NaOH (2 m, 20 μL) whilst stirring for 1 h. A few
droplets of dilute HCl were added to quench the hydride excess.
Gel chromatography on silica column yielded the expected product.
1H NMR ([D6]DMSO): δ = 10.57 (s, 1 H, 3-H), 8.28 (s, 1 H, 1-H),
6.70 (d, J = 8.5 Hz, 1 H, 5-OH), 5.07 (d, J = 8.5 Hz, 1 H, 5-
H) ppm. 1H NMR ([D6]DMSO/D2O = 3:1): δ = 5.10 (s, 1 H, 5-
H) ppm. 13C NMR ([D6]DMSO): δ = 174.5, 156.8, 77.1 ppm. MS
(ESI+, CH3OH/H2O) m/z = 97 [M+ – H2O]. Ret. time (Luna) 8.4–
9.6Ј; Ret. time (Aqua) = 8.8Ј; Rf (Tollens) = 1.2.
Parabanic Acid (Imidazolidine-trione) (7): 1H NMR ([D6]DMSO):
δ = 11.73 (s, 2 H, 1-H and 3-H) ppm. 13C NMR ([D6]DMSO): δ =
160.0; 154.9 ppm. Ret. time (Luna) = 27.7–28.0Ј; Ret. time (Aqua)
= 13.8Ј; Rf (UV) = 1.7.
Isobarbituric Acid (5-Hydroxy-1H-pyrimidine-2,4-di-one) (8): 1H
NMR ([D6]DMSO): δ = 11.11, (s, 1 H, 3-H), 10.13 (s, broad, 1 H,
1-H), 8.37 (s, broad, 1 H, 5-OH), 6.83 (d, J = 5.5 Hz, 1 H, 6-
H) ppm. Ret. time (Luna) 13.5Ј; Ret. time (Aqua) = 15Ј; Rf (UV,
Tollens) = 0.8–0.9.
[14] M. T. Pope, Heteropoly and Isopoly Oxometalates, Springer-
Verlag: New York, 1983.
[15] “Polyoxometalates” Special Issue: C. L. Hill, Chem. Rev. 1998,
98, 1–387.
[16] M. T. Pope, A. Muller Polyoxometalate Chemistry. From Top-
ology via Self-assembly to Applications Kluwer Academic Pub-
lishers: Dordrecht, The Netherlands, 2002.
[17] K. Nomiya, Y. Sugie, K. Amimoto, M. Miwa, Polyhedron 1987,
6, 519–524.
[18] D. Dimotikali, E. Papaconstantinou, Inorg. Chim. Acta 1984,
87, 177–180.
[19] C. L. Hill, Synlett 1995, 127–132.
[20] C. L. Hill, Z. Zheng, Chem. Commun. 1998, 2467–2468.
[21] R. C. Chambers, C. L. Hill, Inorg. Chem. 1989, 28, 2509–2511.
[22] A. Mylonas, A. Hiskia, E. Androulaki, D. Dimotikali, E. Pa-
paconstantinou, Phys. Chem. Chem. Phys. 1999, 1, 437–440.
[23] H. Hiskia, E. Papaconstantinou, Inorg. Chem. 1992, 31, 163–
167.
[24] R. Akid, J. Darwent, J. Chem. Soc., Dalton Trans. 1985, 395–
399.
[25] C. L. Hill, D. A. Bouchard, J. Am. Chem. Soc. 1985, 107, 5148–
5157.
[26] M. Misono, H. Einaga, Bull. Chem. Soc. Jpn. 1997, 70, 1551–
1557.
4902
© 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2005, 4897–4903