1984 J. Phys. Chem. A, Vol. 106, No. 10, 2002
Lewis and Liu
temperature thermochromism data. In contrast, BA phospho-
rescence shows only modest thermochromic shifts at low
temperatures, and no phosphorescence is observed in fluid
solution.
References and Notes
(
1) O’Connell, E. J., Jr.; Delmauro, M.; Irwin, J. J. Photochem.
Photobiol. 1971, 14, 189.
2) Tang, G.-Q.; MacInnis, J.; Kasha, M. J. Am. Chem. Soc. 1987,
(
These results can be understood using the calculated ground-
and excited-state potential energy surfaces and excited-state
configurations. The geometry of the π,π* triplet state is similar
to that of the ground state, and thus, its emission maximum
changes only slightly as the MTHF glass is warmed from 77
K. In contrast, the Franck-Condon n,π* singlet state undergoes
small-amplitude geometric changes even in the 77 K glass or
crystalline solid. The resulting decrease in S1-S0 energy gap
shifts the fluorescence maximum to longer wavelength than the
phosphorescence maximum. Above the solvent glass transition
temperature, the S1 state can undergo large-amplitude twisting
about the amide C-N bond resulting in the formation of a TICT
state that is responsible for the weak Stokes-shifted fluorescence
observed in fluid solution. The luminescence behavior of PI,
MBA, and MDBA can also be correlated with their ground-
and excited-state geometries. Small-amplitude singlet-state
geometric relaxation occurs even for the cyclic analogue PI.
The potential energy surfaces for BA bear some similarity
109, 2531-2533.
(3) Heldt, J.; Gormin, D.; Kasha, M. J. Am. Chem. Soc. 1988, 110,
8
255-8256.
4) Azumaya, I.; Kagechika, H.; Fujiwara, Y.; Itoh, A.; Yamaguchi,
K.; Shudo, K. J. Am. Chem. Soc. 1991, 113, 2833-2838.
(
(
(
5) Lucht, S.; Stumpe, J.; Rutloh, M. J. Fluoresc. 1998, 8, 153-166.
6) Heldt, J.; Heldt, J. R.; Szatan, E. J. Photochem. Photobiol., A 1999,
121, 91-97.
(7) Lewis, F. D.; Long, T. M. J. Phys. Chem. A 1999, 102, 5327.
(8) Lewis, F. D.; Liu, W.-Z. J. Phys. Chem. A 1999, 103, 9678.
(9) (a) Itai, A.; Toriumi, Y.; Tomioka, N.; Kagechika, H.; Azumaya,
I.; Shudo, K. Tetrahedron Lett. 1989, 30, 6177. (b) Azumaya, I.; Yamaguchi,
K.; Kagechika, H.; Saito, S.; Itai, A.; Shudo, K. Yakugaku Zasshi 1994,
114, 414. (c) Azumaya, I.; Kagechika, H.; Yamaguchi, K.; Shudo, K.
Tetrahedron 1995, 51, 5277.
(10) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.;
Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A.
D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi,
M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.;
Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick,
D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.;
Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi,
I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.;
Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M.
W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon,
M.; Replogle, E. S.; Pople, J. A. Gaussian 98, revision A.7; Gaussian,
Inc.: Pittsburgh, PA, 1998.
2
1
to the well-characterized surfaces for the stilbenes in that
twisting about the central C-N or CdC bond results in a
maximum on the ground state and shallow minima in the excited
singlet and triplet surfaces. There are, however, several signifi-
cant differences in the behavior of the benzamides and stil-
2
1
benes. First, the relaxed BA singlet undergoes intersystem
crossing at 77 K, whereas the stilbene singlet does not. This
difference plausibly reflects the n,π* character of the relaxed
BA singlet. Second, there is a small barrier for twisting of singlet
stilbene but not for twisting of BA, resulting in the observation
of fluorescence from the FC state of stilbene but not from BA.
Third, the twisted singlet of stilbene is nonfluorescent as a
consequence of its very short singlet lifetime, whereas twisted
BA is weakly fluorescent and has a moderately long singlet
lifetime. This difference may reflect the higher S0 energy for
twisted stilbene, which results in a smaller S0-S1 energy gap.
Presumably, BA, like stilbene, undergoes efficient E,Z photo-
isomerization. However, the low barrier for BA thermal isomer-
ization (Figure 8) would require the use of low-temperature
methods to detect the Z isomer of BA or the E isomer of MBA.
(11) Zerner, M. C.; Loew, G. H.; Kirchner, R. F.; Mueller-Westerhoff,
U. T. J. Am. Chem. Soc. 1980, 102, 589.
(12) Li, R.; Lim, E. C. J. Chem. Phys. 1972, 57, 605.
(
13) James, D. R.; Siemiarczuk, A.; Ware, W. R. ReV. Sci. Instrum.
1
992, 63, 1710.
(14) Grigg, R.; Gunaratne, H. Q. N.; Sridharan, V. J. Chem. Soc., Chem.
Commun. 1985, 17, 1183.
(15) Chimirri, A.; Grasso, S.; Romeo, G.; Zappala, M.; Fenech, G.
Heterocycles 1985, 23, 895.
(16) Furutsuka, T.; Imura, T.; Kojima, T.; Kawabe, K. Technol. Rep.
Osaka UniV. 1974, 367.
(17) Ling, A. C.; Willard, J. E. J. Phys. Chem. 1968, 72, 1018.
(18) Hagan, T.; Pilloud, D.; Suppan, P. Chem. Phys. Lett. 1987, 139,
499.
(19) McGarry, P. F.; Doubleday, C. E., Jr.; Wu, C.-H.; Staab, H. Z.;
Turro, N. J. J. Photochem. Photobiol. A 1994, 77, 109.
20) Lewis, F. D.; Bassani, D. M.; Caldwell, R. A.; Unett, D. J. J. Am.
Chem. Soc. 1994, 116, 10477.
(
(
21) (a) Waldeck, D. H. Chem. ReV. 1991, 91, 415. (b) Photochromism,
Acknowledgment. Funding for this project was provided
Molecules and Systems; Saltiel, J., Sun, Y.-P., Eds.; Elsevier: Amsterdam,
by NSF Grants CHE-9734941 and CHE-0100596.
1990.