Page 5 of 6
Dalton Transactions
Please do not adjust margins
Journal Name
ARTICLE
due to the low stability at ambient conditions. Therefore, we
performed DFT calculation to estimate the bond dissociation energy
(BDE) of Co(III)–Rf bond (See Supporting Information Table S4).50 For
simplicity, C2 was used as imine/oxime-type cobalt complex and
corrin cobalt complex (corrin) was used as a model for vitamin B12
derivative (C3). The results show that BDEs of C2(III)–CF3 and C2(III)–
C4F9 complexes are 46.0 and 40.0 kcal/mol, respectively. These BDEs
agree well with values obtained by C2(III)–CH3 and corrin(III)–CH3
(36.0 and 42.3 kcal/mol). These results supported the fact that
Co(III)–Rf complex exhibits similar reactivity as the Co(III)–CH3
complex. The mass peak corresponding to the C1 catalyst was
detected using matrix-assisted laser desorption/ionization-time of
flight-mass spectrometry (MALDI-TOF-MS), indicating the stability of
the catalyst during the process (Figure S9). Although the catalytic
fluoroalkylation reactions using naturally derived vitamin B12
derivatives have been previously reported by our group34 and some
perfluoroalkyl cobaloximes have been synthesized and described by
the Togni et al.,30 electrocatalytic fluoroalkylation of the indole and
aniline derivatives mediated by imine/oxime-type cobalt complexes
has not been reported so far.
Acknowledgements
This work was supported by JSPS KAKDENOIH: 1I0.G10r3a9n/tD0NDuTm01b37e7rCs
JP17H04875, JP16H06514, JP18H04265 and JP19K22204. This
work was also supported Izumi Science and Technology
Foundation and Nissan Chemical Corporation.
Notes and references
1
2
3
G. N. Schrauzer, Acc. Chem. Res., 1968, 1, 97.
J. Iqbal, B. Bhatia and N. K. Nayyar, Chem. Rev., 1994, 94, 519.
J. Demarteau, A. Debuigne and C. Detrembleur, Chem. Rev., 2019,
119, 6906.
4
5
R. Banerjee, Chem. Rev., 2003, 103, 2083.
M. Giedyk, K. Goliszewska and D. Gryko, Chem. Soc. Rev., 2015,
44, 3391.
K. Tahara, L. Pan, T. Ono and Y. Hisaeda, Beilstein J. Org. Chem.,
2018, 14, 2553.
6
7
8
G. Costa, Coord. Chem. Rev., 1972, 8, 63.
C. M. Elliott, E. Hershenhart, R. G. Finke and B. L. Smith, J. Am.
Chem. Soc., 1981, 103, 5558.
M. D. March, N. Demitri, S. Geremia, N. Hickey and L. Randaccio,
J. Inorg. Biochem., 2012, 116, 215.
9
10 R. Dreos, S. Geremia, L. Randaccio and P. Siega, In PATAI’s
Chemistry of Functional Groups, John Wiley & Sons.
11 G. Costa, G. Mestroni and E. d. Savorgnani, Inorg. Chim. Acta,
1969, 3, 323.
12 W. H. Tamblyn, R. J. Klingler, W. S. Hwang and J. K. Kochi, J. Am.
Chem. Soc., 1981, 103, 3161.
Pt mesh cathode
indole or aniline
NR1R2
Rf
CoIII
derivatives
Rf
R2
or
Rf
e
N
13 C. M. Elliott, E. Hershenhart, R. G. Finke and B. L. Smith, J. Am.
Chem. Soc., 1981, 103, 5558.
R1
R3
CoII
14 Y. Murakami, Y. Hisaeda, S.-D. Fan and Y. Matsuda, Chem. Lett.,
1988, 835.
15 Y. Murakami, Y. Hisaeda, S.-D. Fan and Y. Matsuda, Bull. Chem.
Soc. Jpn., 1989, 62, 2219.
16 K. Tahara, L. Pan, R. Yamaguchi, H. Shimakoshi, M. Abe and Y.
Hisaeda, J. Inorg. Biochem., 2017, 177, 438.
C3H7
C2H5
Rf
N
Br
N
N
CoIII
e
C3H7
C2H5
Co
N
Br
O
O
I
H
CoI
17 P.-A. Jacques, V. Artero, J. Pécaut and M. Fontecave, PNAS, 2009,
106, 20627.
RfI
–0.8 V vs. Ag/AgCl
C1
18 P. Zhang, P.-A. Jacques, M. Chavarot-Kerlidou, M. Wang, L. Sun,
M. Fontecave and V. Artero, Inorg. Chem., 2012, 51, 2115.
19 A. Bhattacharjee, E. S. Andreiadis, M. Chavarot-Kerlidou, M.
Fontecave, M. J. Field and V. Artero, Chem. Eur. J., 2013, 19,
15166.
Scheme 1. Mechanistic study of radical fluoroalkylation mediated by
C1.
20 N. Kaeffer, M. Chavarot-Kerlidou and V. Artero, Acc. Chem. Res.,
2015, 48, 1286.
21 J. Wang, M. Sánchez-Roselló, J. L. Aceña, C. d. Pozo, A. E.
Sorochinsky, S. Fustero, V. A. Soloshonok and H. Liu, Chem. Rev.,
2014, 114, 2432.
22 A. Vitale, R. Bongiovanni and B. Ameduri, Chem. Rev., 2015, 115,
8835.
23 Y. Zhou, J. Wang, Z. Gu, S. Wang, W. Zhu, J. L. Aceña, V. A.
Soloshonok, K. Izawa and H. Liu, Chem. Rev., 2016, 116, 422.
24 S. Barata-Vallejo, S. M. Bonesi and A. Postigo, RSC Adv., 2015, 5,
62498.
25 L. He, K. Natte, J. Rabeah, C. Taeschler, H. Neumann, A. Brückner
and M. Beller, Angew. Chem. Int. Ed., 2015, 54, 4320.
26 H.-X. Song, Q.-Y. Han, C.-L. Zhao and C.-P. Zhang, Green Chem.,
2018, 20, 1662.
27 A. Studer, Angew. Chem. Int. Ed., 2012, 51, 8950.
28 S. Barata-Vallejo, M. V. Cooke and A. Postigo, ACS Catal., 2018, 8,
7287.
Conclusions
In summary, we have demonstrated the electrocatalytic reactivity of
imine/oxime-type cobalt complex as a simple vitamin B12 model
complex for the direct C–H trifluoromethylation and
perfluoroalkylation of (hetero)arenes with an electrochemical
approach. The maximum value of TON is up to 87, suggesting the
sufficient stability of this catalyst for the fluoroalkylation reactions.
The radical trapping studies indicated that the reaction proceeds
through a radical pathway mediated by homolytic cleavage of the
cobalt(III)–carbon bond. At this stage, cobalt(III)–Rf intermediate was
not isolated due to the low stability at ambient temperature. The
mechanism study is still under investigation in our laboratory.
29 C. F. Harris, C. S. Kuehner, J. Bacsa and J. D. Soper, Angew. Chem.
Int. Ed., 2018, 57, 1311.
30 P. Liebing, F. Oehler, M. Wagner, P. F. Tripet and A. Togni,
Organometallics, 2018, 37, 570.
Conflicts of interest
There are no conflicts to declare.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 5
Please do not adjust margins