5794
D.-H. Kim et al. / Tetrahedron Letters 53 (2012) 5791–5795
Table 1
funded by the Ministry of Education, Science and Technology
(2011-0002609). This work was supported by a Grant from the
Kyung Hee University in 2011 (KHU-20110242).
Estimated thermodynamic parameters for guest-HTbCD complexation from ITC
measurements (T = 303 K, 1:1 binding mode)
Guesta
log K
D
H° (kJ molꢁ1
)
TD )
S° (kJ molꢁ1
Adamantane carboxylate
Decanoate
4.2
3.0
ꢁ15
ꢁ11
8.8
5.8
Supplementary data
a
Countercation: Na+.
Supplementary data associated with this article can be found, in
References and notes
1. Davis, M. E.; Brewster, M. E. Nat. Rev. Drug Disc. 2004, 3, 1023.
2. Laza-Knoerr, A. L.; Gref, R.; Couvreur, P. J. Drug Target 2010, 18, 645.
3. Handbook of Pharmaceutical Excipients; Kibbe, A. H., Ed., 3rd ed.; American
Pharmaceutical Association and Pharmaceutical Press, 2000. pp 165–168.
4. bCDs (molecular weight (1030–1750 Da)) are able to achieve a 50% (w/v)
concentration in water.
5. Pitha, J.; Gerloczy, A.; Olivi, A. J. Pharm. Sci. 1994, 83, 833.
6. (a) Meldal, M.; Tornøe, C. W. Chem. Rev. 2008, 108, 2952; (b) Bock, V. D.;
Hiemstra, H.; van Maarseveen, J. H. Org. Lett. 2006, 8, 919; (c) Hein, J. E.; Fokin,
V. V. Chem. Soc. Rev. 2010, 39, 1302.
7. Hoogenboom, R.; Moore, B. C.; Schubert, U. S. Chem. Commun. 2006, 14, 4010.
8. (a) Srinivasachari, S.; Fichter, K. M.; Reineke, T. M. J. Am. Chem. Soc. 2008, 130,
4618; (b) Méndez-Ardoy, A.; Gómez-García, M.; Ortiz Mellet, C.; Sevillano, N.;
Girón, M. D.; Salto, R.; Santoyo-González, F.; García Fernández, J. M. Org. Biomol.
Chem. 2009, 7, 2681; (c) Méndez-Ardoy, A.; Guilloteau, N.; Di Giorgio, C.;
Vierling, P.; Santoyo-González, F.; Ortiz Mellet, C.; García Fernández, J. M. J. Org.
Chem. 2011, 76, 5882.
9. (a) David, O.; Maisonneuve, S.; Xie, J. Tetrahedron Lett. 2007, 48, 6527; (b)
Souchon, V.; Maisonneuve, S.; David, O.; Leray, I.; Xie, J.; Valeur, B. Photochem.
Photobiol. Sci. 2008, 7, 1323.
10. (a) Pérez-Balderas, F.; Ortega-Muñoz, M.; Morales-Sanfrutos, J.; Hernández-
Mateo, F.; Calvo-Flores, F. G.; Calvo-Asín, J. A.; Isac-García, J.; Santoyo-
González, F. Org. Lett. 1951, 2003, 5; (b) Ortega-Muñoz, M.; Morales-
Sanfrutos, J.; Perez-Balderas, F.; Hernandez-Mateo, F’.; Giron-Gonzalez, M. D.;
Sevillano-Tripero, N.; Salto-Gonzalez, R.; Santoyo-Gonzalez, F. Org. Biomol.
Chem. 2007, 5, 2291.
11. (a) Bryson, J. M.; Chu, W. J.; Lee, J. H.; Reineke, T. M. Bioconjugate Chem. 2008,
19, 1505; (b) Song, Y.; Kohlmeir, E. K.; Meade, T. J. J. Am. Chem. Soc. 2008, 130,
6662.
12. Literature survey shows that Thatcher G. R. J. et al. reported the HTbCD
synthesis (Bioorg. Med. Chem. 2010, 18, 809). Their synthesis used the
conventional, organic click condition (CuI, DIEA) without a chromatographic
purification and the yield was low (15%). They did not report any structural,
physical properties of HTbCD.
Figure 6. Effect of HTbCD on cell viability in Hep-G2 cells. After 24 h of HTbCD
treatment, the visible absorption of formazan crystals was measured at 570 nm and
the cell viability was normalized by the control value ([HTbCD] = 0). Results
represent the mean ( SEM) of five independent experiments.
solvation of the cyclodextrin cavity, thereby decreasing the Kas. For
practical applications, which are currently limited by the low solu-
bility of b-CD, the reduced Ka of HTbCD can be compensated for by
the enhanced water solubility of HTbCD.
The cytotoxicity of a new chemically modified form of b-CD is
also of critical importance for future drug delivery and food/cos-
metic formulation applications. We measured the effect of the 6-
hydroxymethyltriazolyl modification of b-CD on cell viability using
the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide) assay24 (Fig. 6 and Supplementary data E). HTbCD did
not adversely impact Hep-G2 cell viability at concentrations under
13. 6-Azido-6-deoxy-b-cyclodextrin 2 (30 mg) was dissolved in a 4 mL (1:1, v/v)
cosolvent of THF/phosphate buffer (0.1 M, pH 7.0) and propargyl alcohol
(1.5 equiv per N3) was added. CuSO4/THPTA (1:5 ratio) and sodium ascorbate
were added to reach the each final concentrations of 1 mM for Cu2+ and 5 mM
for sodium ascorbate. After a short mixing period, the reaction mixture in a
closed vessel was irradiated at 70 W and 130 °C in microwave reactor (CEM
Discover, dynamic mode, no cooling air) for 10 min. The reaction progress was
roughly checked by TLC (1-propanol/ethyl acetate/water/28% ammonia = 6/1/
3/1, Rf = 0.79 for the starting, Rf = 0.35 for the desired product). THF was
evaporated in vacuo and the residue was purified by column chromatography
on a Diaion™ HP-20 (water/methanol = 100/0 to 60/40). The 80/20 (water/
methanol, v/v) fraction afforded the desired product (yield, 52%). Up to
ꢃ200 mg of HTbCD was successfully obtained by open-vessel MW irradiation
at 75 °C for 1 h.
100
centration of HTbCD (1000
In conclusion, we synthesized HTbCD, a chemically modified
b-cyclodextrin through microwave-assisted, protection-free,
lM. The cell viability decreased to 86% only at a very high con-
lM) compared with the control.
a
copper(I)-catalyzed azide–alkyne cycloaddition reaction, and inves-
tigated its properties. HTbCD has unique structural and physical
characteristics. NMR, circular dichroism, and computer modeling
showed that HTbCD has a well-defined, rigid structure. In addition
the 6-(4-hydroxymethyl-1H-[1,2,3]triazol-1-yl) modification of b-
CD dramatically improved its water solubility. The binding con-
stants measured by UV/vis and ITC titration revealed that HTbCD
has a lower Ka than b-CD. An MTT assay revealed that the 6-hydrox-
ymethyltriazolyl modification of b-CD did not adversely affect cell
1H NMR (D2O, 600 MHz): d 7.89 (s, 7H, H7), 5.12 (d, 7H, J = 3.2 Hz, H1), 4.46 (d,
7H, J = 13.3 Hz, H9), 4.41 (d, 7H, J = 13.3 Hz, H9), 4.30 (app d, 7H, H6), 4.24 (app
t, 7H, H5), 4.17 (m, 7H, H6), 4.00 (app t, 7H, H3), 3.61 (dd, 7H, J = 9.8, 3.1 Hz,
H2), 3.40 (app t, 7H, H4); 13C NMR (D2O, 150 MHz): d 148.2 (C8), 127.2 (C7),
103.2 (C1), 84.1 (C4), 73.8 (C3), 73.1 (C2), 71.5 (C5), 55.8 (C9), 51.7 (C6); MALDI-
TOF (CHCA, positive): calcd 1701.5 for C63H91N21O35, observed 1724.2 for
[M+Na]+ (relative intensity 100%).
14. Presolski, S. I.; Hong, V.; Cho, S. H.; Finn, M. G. J. Am. Chem. Soc. 2010, 132,
14570.
15. Hong, V.; Presolski, S. I.; Ma, C.; Finn, M. G. Angew. Chem., Int. Ed. 2009, 48,
9879.
16. Adachi, T.; Ando, S.; Watanabe, J. J. Chromatogr. A 2002, 944, 41.
17. (a) Kretschmann, O.; Choi, S. W.; Miyauchi, M.; Tomatsu, I.; Harada, A.; Ritter,
H. Angew. Chem., Int. Ed. 2006, 45, 4361; (b) Hoshino, T.; Masahiko, M.;
Kawaguchi, Y.; Yamaguchi, H.; Harada, A. J. Am. Chem. Soc. 2000, 122, 9876.
18. Ward, S.; Ling, C. C. Eur. J. Org. Chem. 2011, 4853.
viability for HTbCD concentrations of less than 100 lM. These exper-
imental data indicate that HTbCD meets the following basic require-
ments for further applications: (1) facile synthesis, (2) well-defined
structure, (3) high water solubility, and (4) low cytotoxicity. Consid-
ering these material properties of HTbCD, structurally well-defined,
highly water-soluble cyclodextrin click clusters appear to have po-
tential as novel excipients in pharmaceutical formulations.
19. Rekaï, E. D.; Baudin, J. B.; Jullien, L.; Ledoux, I.; Zyss, J.; Blanchard-Desce, M.
Chem. Eur. J. 2001, 7, 4395.
20. Harada, A.; Kamachi, M. Macromolecules 1990, 23, 2821.
21. Miyajima, K.; Komatsu, H.; Inoue, K.; Handa, T.; Nakagaki, M. Bull. Chem. Soc.
Jpn. 1990, 63, 6.
Acknowledgments
22. Zhang, B.; Breslow, R. J. Am. Chem. Soc. 1993, 115, 9353.
23. Gelb, R. I.; Schwartz, L. M. J. Inclusion Phenom. Mol. Recognit. Chem. 1989, 7, 465.
24. Mosmann, T. J. Immunol. Methods 1983, 65, 55.
This research was supported by the Basic Science Research Pro-
gram through the National Research Foundation of Korea (NRF)