3
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
d) M. A. Andrews, G. L. Gould, S. A. Klaeren, J. Org. Chem.
1989, 54, 5257. e) H. E. J. Hendriks, B. F. M. Kuster, G. B.
Marin, Carbohydr. Res. 1991, 214, 71. f) R. van den Berg, J. A.
Peters, H. van Bekkum, Carbohydr. Res. 1995, 267, 65. g) R. N.
Monrad, R. Madsen, J. Org. Chem. 2007, 72, 9782.
a) O. Ruff, Chem. Ber., 1898, 31, 1573. b) H. G. Fletcher, H. W.
Diehl, C. S. Hudson, J. Am. Chem. Soc. 1950, 72, 4546. c) J. A.
Stapley, J. N. BeMiller, Carbohydr. Res., 2007, 342, 407.
a) C. Neuberg, Biochem. Z., 1908, 7, 537. b) W. Loeb, Biochem.
Z., 1909, 17, 132. c) F. Pergola, L. Nucci, G. Pezzatini, H. Wei,
R. Guidelli, Electrochim. Acta, 1994, 39, 1415. d) V. Jiřičný, V.
Staněk, J. Appl. Electrochem., 1994, 24, 930.
1
2
3
LiOH was placed simply in an open flask and irradiated
with blue LEDs for 18 h. D-Arabinose (5) was produced in
51% yield.
4
5
4
5
Scheme 4. Degradation of D-glucono-1,5-lactone (4) in the air
6
C. Kingston, M. D. Palkowitz, Y. Takahira, J. C. Vantourout, B.
K. Peters, Y. Kawamata, P. S. Baran, Acc. Chem. Res. 2020, 53,
72.
6
7
8
9
The polyhydroxy ketone 16 is a versatile chiral
compound often employed in asymmetric syntheses of
various natural products and bioactive compounds.16 It is
conventionally prepared from readily available quinic acid
7
8
For the environmental friendliness of photoredox catalysis, see:
G. E. M. Crisenza, P. Melchiorre, Nat. Commun. 2020, 11, 803.
Oxidative decarboxylation reactions of -hydroxycarboxylic
acids using other photomediators: a) K. Okada, K. Okubo, M.
Oda, J. Photochem. Phorobiol. A: Chem., 1991, 57, 265. b) M. H.
Habibi, S. Farhadi, J. Chem. Research (S), 1998, 776. c) H.
Nakayama, A. Itoh, Tetrahedron Lett. 2008, 49, 2792. d) N. Tada,
Y. Matsusaki, T. Miura, A. Itoh, Chem. Pharm. Bull. 2011, 59,
906. e) D. W. Manley, J. C. Walton, Org. Lett. 2014, 16, 5394.
S. Fukuzumi, K. Ohkubo, Org. Biomol. Chem., 2014, 12, 6059.
10 (15) by an oxidation reaction which uses a stoichiometric
11 amount of sodium periodate17 or a hypochlorite solution.18
12 We next tried to apply the present degradation reaction to
13 the synthesis of the ketone 16 from quinic acid (15)
14 (Scheme 5). When 15 in acetonitrile/water was irradiated
15 with blue light under an oxygen atmosphere in the presence
16 of the acridinium catalyst 2 and KOH, the corresponding
17 ketone 16 was produced in 90% yield. Thus, the present
18 degradation reaction presents a facile access to the valued
19 carbonyl compound from the naturally occurring compound
20 dispensing with the use of strong oxidants or protective
21 groups.
9
70 10 The aldehyde
3 was scarcely produced under a nitrogen
71
atmosphere.
72 11 a) K. Suga, K. Ohkubo, S. Fukuzumi J. Phys. Chem. A 2006, 110,
73
74
3860. b) H.-T. Song, W. Ding, Q.-Q. Zhou, J. Liu, L.-Q. Lu, W.-
J. Xiao, J. Org. Chem. 2016, 81, 7250.
75 12 G. Pezzatini, H. Wei, R. Guidelli, F. Pergola, Electroanalysis,
76
1992, 4, 129.
77 13 K. Ohkubo, K. Mizushime, R. Iwata, K. Souma, S. Suzuki, S.
Fukuzumi, Chem. Commun. 2010, 46, 601.
79 14 Generation of hydrogen peroxide was confirmed by colorimetry
of the crude reaction mixture using the MQuant® test strip.
81 15 Y. Masuda, H. Tsuda, M. Murakami, Angew. Chem., Int. Ed.
2020, 59, 2755.
83 16 a) M. T. Barros, C. D. Maycock, M. R. Ventura, J. Org. Chem.
78
80
82
22
84
85
86
87
88
89
90
91
92
93
94
1997, 62, 3984. b) G. Pandey, A. Murugan, M. Balakrishnan,
Chem. Commun. 2002, 624. c) L. M. Murray, P. O’Brien, R. J. K.
Taylor, Org. Lett, 2003, 5, 1943. d) K. Ono, A. Yoshida, N. Saito,
T. Fujishima, S. Honzawa, Y. Suhara, S. Kishimoto, T. Sugiura,
K. Waku, H. Takayama, A. Kittaka, J. Org. Chem. 2003, 68,
7407. e) C. L. Arthursa, K. F. Lingleya, M. Piacentia, I. J.
Stratfordb, T. Tatica, R. C. Whiteheada, N. S. Wind, Tetrahedron
Lett., 2008, 49, 2410. f) M. Altemöller, J. Podlech, Eur. J. Org.
Chem. 2009, 2009, 2275. g) M. Li, Y. Li, K. A. Ludwik, Z. M.
Sandusky, D. A. Lannigan, G. A. O’Doherty, Org. Lett. 2017, 19,
2410.
23
24 Scheme 5. Degradation of quinic acid (15)
25
26
In summary, we have developed the degradation
27 reaction of aldohexonic acids which are shortened by one-
28 carbon to aldopentoses. It makes use of readily available
29 naturally occurring hexose derivatives as the feedstocks, and
30 light and molecular oxygen as the driving forces for their
31 direct transformation.
95 17 L. Malaprade, Bull. Soc. Chim. Fr. 1928, 43, 683.
96 18 N. Ran, D. R. Knop, K. M. Draths, J. W. Frost, J. Am. Chem. Soc.
97
2001, 123, 10927.
32
33
This work was supported by JSPS KAKENHI Grant
34 Numbers 15H05756 (M.M.) and 19K15562 (Y.M.).
35
36
Supporting
Information
is
available
on
37 http://dx.doi.org/10.1246/cl.******.
38 References and Notes
39
40
41
42
43
44
1
2
3
S. Ur-Rehman, Z. Mushtaq, T. Zahoor, A. Jamil, M. A. Murtaza,
Crit. Rev. Food Sci. Nutr. 2015, 55, 1514.
M. D. Delost, D. T. Smith, B. J. Anderson, J. T. Njardarson, J.
Med. Chem. 2018, 61, 10996.
a) A. Wohl, Chem. Ber., 1893, 26, 730. b) G. Braun, Org. Synth.
1940, 20, 14. c) W. J. Humphlett, Carbohydr. Res. 1967, 4, 157.