Vol. 32, No. 5 (2020)
Theoretical Rationalization of Structure of Transannular Bonded Germanium Complexes 997
1
13
manner in 1:1 molar ratio with H
2
L and HL reacting with diffe-
(q, Ge-CH
2
CH
3
). C NMR (CDCl
3
, 75 MHz): δ 162.50 (1,
rent R
2
GeCl
2
and R GeCl, respectively.All complexes are soluble
3
C=O), 151.09 (2, C=N), 149.24-122.32 (4, C=C), 7.81 (3, Ge-
in organic solvents like benzene, hexane, chloroform, etc.
CH
2
CH
3
), 12.16 (3, Ge-CH
2
CH
3
). Anal. calcd. (found) (%)
for C17
H
23
N
3
OGe: C, 57.03 (59.02); H, 6.48 (6.33); N, 11.74
Spectral data
(
11.39); Ge, 20.28 (20.13).
Compound 6: Brown solid, yield ~ 55 %, m.p.: 154 °C, IR
N,N’-Bis(2-pyridyl)pyridine-2,6-dicarboxamide (H L):
White solid, yield ~ 60 %, m.p.: 215°C, IR (KBr, νmax, cm ):
2
–1
–1
1
(
KBr, νmax, cm ): 1695 (C=O), 528 (Ge-C). H NMR (CDCl ,
3
1
1
(
1
691 (C=O), 3354 (N-H). H NMR (CDCl
3
, 300 MHz): δ 10.55
s, NH), 8.63-7.31 (m, ArH). C NMR (CDCl , 75 MHz): δ
62.68 (2, C=O), 150.88 (3, C=N), 149.08-123.54 (6, C=C).
13
3
00 MHz): δ 8.58-7.20 (m, ArH), 0.31 (s, Ge-Me). C NMR
, 75 MHz): δ 162.50 (1, C=O), 151.07 (2, C=N), 149.23-
22.02 (4, C=C), 4.85 (3, Ge-Me). Anal. calcd. (found) (%) for
OGe: C, 53.23 (53.08); H, 5.42 (5.83); N, 13.30 (13.33);
Ge, 22.98 (22.13).
1
3
3
(CDCl
3
1
C
Anal. calcd. (found) (%) for C17
H
13
N
5
O
2
: C, 63.94 (63.11); H,
H
14 17
N
3
4
.10 (4.03); N, 21.93 (21.98).
1
N-(Pyridine-2-yl)picolinamide (HL ):White crystal, yield
–
1
~
(
(
1
(
(
75 %, m.p.: 102°C, IR (KBr, νmax, cm ): 1698 (C=O), 3350
RESULTS AND DISCUSSION
1
N-H). H NMR (CDCl
3
, 300 MHz): δ 10.59 (s, NH), 8.57-7.36
m, ArH). C NMR (CDCl , 75 MHz): δ 162.11 (1, C=O),
50.24 (2, C=N), 149.83-123.94 (4, C=C).Anal. calcd. (found)
O: C, 66.32 (66.21); H, 4.55 (4.73); N, 21.09
In the IR spectra of the ligands there is a peak in the range
13
3
-1
3
354-3350 cm which is assigned to ν(N-H) of amide ligand
which disappears on complex formation. Peak corresponding
%) for C11
9
H N
3
to ν(C=O) remains almost unchanged in all the complexes
20.98).
Compound 1: Yellow solid, yield ~ 42 %, m.p.: 232 °C, IR
1
13
which means there is no coordination from it. The H and C
NMR spectra of all the germanium complexes exhibited charac-
teristic signals and multiplicities for R-Ge and ligand protons.
–
1
1
(
3
KBr, νmax, cm ): 1688 (C=O), 524 (Ge-C). H NMR (CDCl ,
3
13
00 MHz): δ 8.61-7.32 (m,ArH). C NMR (CDCl
3
, 75 MHz):
1
In H NMR spectrum of ligand, deuterium exchangeable amide
δ 162.45 (2, C=O), 149.99 (3, C=N), 149.77-122.14 (12, C=C).
Anal. calcd. (found) (%) for C29 Ge: C, 64.01 (64.22);
H, 3.89 (3.73); N, 12.87 (12.58); Ge, 13.34 (13.11).
protons resonated in the region 10.58-10.59 ppm which dis-
appears on complex formation suggesting deprotonation
of amide protons and subsequent Ge-N formation. C NMR
H
21
N
5
O
2
13
Compound 2: Cream solid, yield ~ 68 %, m.p.: 225 °C, IR
spectrum gives characteristic signals for R-Ge resonances.
–
1
1
(
3
(
KBr, νmax, cm ): 1690 (C=O), 529 (Ge-C). H NMR (CDCl ,
3
Computational calculations
00 MHz): δ 8.56-7.12 (m, ArH), 0.61 (t, Ge-CH
2
CH
, 75 MHz): δ 162.35 (2,
C=O), 151.99 (3, C=N), 149.26-122.62 (6, C=C), 7.99 (2, Ge-
CH CH ), 12.73 (2, Ge-CH CH ). Anal. calcd. (found) (%)
Ge: C, 56.30 (56.12); H, 4.72 (4.23); N, 15.63
16.58); Ge, 16.21 (16.99).
Compound 3: White solid, yield ~ 53 %, m.p.: 195 °C, IR
3
), 0.93
13
q, Ge-CH
2
CH
3
). C NMR (CDCl
3
Structural studies: The structures of ligands and com-
plexes were well studied by different computational methods
using Gaussian 03 suite of programs. All the structures are
optimized by DFT-B3LYP method using mixed valence basis
set (6-31g(d) + LanL2DZ). The optimized parameters of the
complexes are listed in Table-1.
In the ligand (H
interaction between two pyridyl rings with a distance of 4.02
Å between the centeres and an angle of 22.5°. In Fig. 1, H
shows the attractive electrostatic interaction between the σ
framework and the π electron density in the ligand. This is
mainly due to the presence of nitrogen in the ring which has
an electron withdrawing effect that reduces the π electron
density and thus increases π–π interactions. In HL, anti-anti
conformation is the most stable one because in cis form there
is lone pair repulsion between N and O. In anti form there is
an intramolecular hydrogen bonding and this conformation
remains unchanged in complexes also.
2
3
2
3
for C21
H
21
N O
5 2
(
–
1
1
(
3
(
1
KBr, νmax, cm ): 1692 (C=O), 521 (Ge-C). H NMR (CDCl
3
,
2
L), there is a parallel displaced π-πstacking
13
00 MHz): δ 8.55-7.22 (m, ArH), 0.13 (s, Ge-Me). C NMR
, 75 MHz): δ 162.31 (2, C=O), 149.98 (3, C=N), 149.44-
23.62 (6, C=C), 4.32 (2, Ge-Me). Anal. calcd. (found) (%) for
Ge: C, 54.34 (54.22); H, 4.08 (4.12); N, 16.68
CDCl
3
2
L
C
19
H
17
N
5
O
2
(
16.34); Ge, 17.29 (17.99).
Compound 4: Off white solid, yield ~ 54 %, m.p.: 132 °C,
IR (KBr, νmax, cm ): 1697 (C=O), 528 (Ge-C). H NMR (CDCl ,
–1
1
3
13
3
00 MHz): δ 8.65-7.26 (m,ArH). C NMR (CDCl
δ 162.45 (1, C=O), 150.93 (2, C=N), 148.44-128.32 (13, C=C).
Anal. calcd. (found) (%) for C29 OGe: C, 69.37 (69.72);
3
, 75 MHz):
H
23
N
3
H, 4.62 (4.33); N, 8.37 (8.39); Ge, 14.23 (Ge, 14.46).
Compound 5: Cream solid, yield ~ 45 %, m.p.: 171 °C, IR
After complexation, a new H-bond interaction is observed
in complexes 1-3 between carbonyl oxygen and hydrogens
from two pyridyl rings. The pyridine-2,6-dicarboxamido unit
–1
1
(
3
KBr, νmax, cm ): 1697 (C=O), 523 (Ge-C). H NMR (CDCl ,
3
00 MHz): δ 8.60-7.01 (m, ArH), 0.67 (t, GeCH
2
CH ), 0.99
3
TABLE-1
OPTIMIZED PARAMETERS OF COMPLEXES 1-6
r
R
R
R
θ
θ
θ
1
Compound
1
2
3
E (Kcal/mol)
1
2
2
3
3
(
C=O)
(Ge-N )
2.070
2.141
2.044
3.760
3.290
3.580
(Ge-N )
2.010
2.046
2.046
1.930
1.960
1.960
(Ge-N )
2.070
2.140
2.044
4.040
3.860
4.010
(N ,Ge,N )
77.18
(N ,Ge,N )
77.18
(N ,Ge,N )
146.90
151.06
153.58
102.38
103.53
102.84
1
2
3
4
5
6
1.227
1.235
1.224
1.229
1.231
1.231
-3617.353
-3312.540
-3233.883
-2993.274
-2976.537
-2858.597
75.58
76.50
69.44
65.25
75.59
76.51
46.69
52.81
63.93
53.80