G Model
CCLET 3686 1–5
J.-C. Gui et al. / Chinese Chemical Letters xxx (2016) xxx–xxx
5
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
[7] K.S. Rao, S.M. Hubig, J.N. Moorthy, J.K. Kochi, Stereoselective photodimerization of
(E)-stilbenes in crystalline g-cyclodextrin inclusion complexes, J. Org. Chem. 64
(1999) 8098–8104.
[8] M. Yoshizawa, Y. Takeyama, T. Kusukawa, M. Fujita, Cavity-directed, highly
stereoselective [2 + 2] photodimerization of olefins within self-assembled coor-
dination cages, Angew. Chem. Int. Ed. 41 (2002) 1347–1349.
[9] M. Yoshizawa, Y. Takeyama, T. Okano, M. Fujita, Cavity-directed synthesis within
a self-assembled coordination cage: highly selective [2 + 2] cross-photodimer-
ization of olefins, J. Am. Chem. Soc. 125 (2003) 3243–3247.
[10] L. Lei, L. Luo, X. Wu, et al., Cucurbit[8]uril-mediated photodimerization of alkyl
2-naphthoate in aqueous solution, Tetrahedron Lett. 49 (2008) 1502–1505.
[11] M.V. Maddipatla, L.S. Kaanumalle, A. Natarajan, M. Pattabiraman, V. Ramamurthy,
Preorientation of olefins toward a single photodimer: cucurbituril-mediated
photodimerization of protonated azastilbenes in water, Langmuir 23 (2007)
7545–7554.
[12] R. Wang, L. Yuan, D.H. Macartney, Cucurbit[7]uril mediates the stereoselective
[4 + 4] photodimerization of 2-aminopyridine hydrochloride in aqueous solution,
J. Org. Chem. 71 (2006) 1237–1239.
[13] D.M. Bassani, V. Darcos, S. Mahony, J.P. Desvergne, Supramolecular catalysis of
olefin [2 + 2] photodimerization, J. Am. Chem. Soc. 122 (2000) 8795–8796.
[14] T. Wada, M. Nishijima, T. Fujisawa, et al., Bovine serum albumin-mediated
enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylate, J.
Am. Chem. Soc. 125 (2003) 7492–7493.
[15] T. Ogoshi, S. Kanai, S. Fujinami, T.A. Yamagishi, Y. Nakamoto, para-Bridged
symmetrical pillar [5] arenes: their Lewis acid catalyzed synthesis and host–
guest property, J. Am. Chem. Soc. 130 (2008) 5022–5023.
[16] M. Xue, Y. Yang, X. Chi, Z. Zhang, F. Huang, Pillararenes, a new class of macrocycles
for supramolecular chemistry, Acc. Chem. Res. 45 (2012) 1294–1308.
[17] Y. Cao, X.Y. Hu, Y. Li, et al., Multistimuli-responsive supramolecular vesicles based
on water-soluble pillar[6]arene and SAINT complexation for controllable drug
release, J. Am. Chem. Soc. 136 (2014) 10762–10769.
[27] C. Ke, C. Yang, T. Mori, et al., Catalytic enantiodifferentiating photocyclodimer- 349
ization of 2-anthracenecarboxylic acid mediated by a non-sensitizing chiral 350
metallosupramolecular host, Angew. Chem. Int. Ed. 48 (2009) 6675–6677.
351
[28] Q. Wang, C. Yang, C. Ke, et al., Wavelength-controlled supramolecular photo- 352
cyclodimerization of anthracenecarboxylate mediated by g-cyclodextrins, Chem. 353
Commun. 47 (2011) 6849–6851.
354
[29] C. Yang, C. Ke, W. Liang, et al., Dual supramolecular photochirogenesis: ultimate 355
stereocontrol of photocyclodimerization by a chiral scaffold and confining host, J. 356
Am. Chem. Soc. 133 (2011) 13786–13789.
357
[30] C. Yang, T. Mori, Y. Origane, et al., Highly stereoselective photocyclodimerization 358
of a-cyclodextrin-appended anthracene mediated by g-cyclodextrin and cucur- 359
bit[8]uril: a dramatic steric effect operating outside the binding site, J. Am. Chem. 360
Soc. 130 (2008) 8574–8575.
361
[31] J. Yao, Z. Yan, J. Ji, et al., Ammonia-driven chirality inversion and enhancement in 362
enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylate me- 363
diated by diguanidino-g-cyclodextrin, J. Am. Chem. Soc. 136 (2014) 6916–6919. 364
[32] M. Nishijima, H. Tanaka, G. Fukuhara, et al., Supramolecular photochirogenesis 365
with functional amyloid superstructures: product chirality switching by chiral 366
variants of insulin fibrils upon enantiodifferentiating photocyclodimerization of 367
2-anthracenecarboxylate, Chem. Commun. 49 (2013) 8916–8918.
368
[33] Y. Kawanami, S.Y. Katsumata, J.I. Mizoguchi, et al., Enantiodifferentiating photo- 369
cyclodimerization of 2-anthracenecarboxylic acid via competitive binary/ternary 370
hydrogen-bonded complexes with 4-benzamidoprolinol, Org. Lett. 14 (2012) 371
4962–4965.
372
[34] Y. Kawanami, H. Umehara, J.I. Mizoguchi, et al., Cross-versus homo-photocyclo- 373
dimerization of anthracene and 2-anthracenecarboxylic acid mediated by chiral 374
hydrogen-bonding template. Factors controlling the cross/homo-and enantio- 375
selectivities, J. Org. Chem. 78 (2013) 3073–3085.
376
[35] M. Alagesan, K. Kanagaraj, S. Wan, et al., Enantiodifferentiating [4 + 4] photo- 377
cyclodimerization of 2-anthracenecarboxylate mediated by a self-assembled iron 378
tetrahedral coordination cage, J. Photochem. Photobio. A: Chem. (2016), http:// 379
[18] W. Chen, Y. Zhang, J. Li, et al., Synthesis of a cationic water-soluble pillar[6]arene
and its effective complexation towards naphthalenesulfonate guests, Chem.
Commun. 49 (2013) 7956–7958.
[19] C.L. Sun, J.F. Xu, Y.Z. Chen, et al., Monofunctionalized pillar [5] arene-based stable
[1] pseudorotaxane, Chin. Chem. Lett. 26 (2015) 843–846.
[20] C. Li, K. Han, J. Li, et al., Supramolecular polymers based on efficient pillar[5]arene-
neutral guest motifs, Chem. Eur. J. 19 (2013) 11892–11897.
[21] S.H. Li, H.Y. Zhang, X. Xu, Y. Liu, Mechanically selflocked chiral gemini-catenanes,
380
[36] C. Yang, T. Mori, Y. Inoue, Supramolecular enantiodifferentiating photocyclodi- 381
merization of 2-anthracenecarboxylate mediated by capped g-cyclodextrins: 382
critical control of enantioselectivity by cap rigidity, J. Org. Chem. 73 (2008) 383
5786–5794.
384
[37] C. Yang, A. Nakamura, T. Wada, Y. Inoue, Enantiodifferentiating photocyclodi- 385
merization of 2-anthracenecarboxylic acid mediated by g-cyclodextrins with a 386
flexible or rigid cap, Org. Lett. 8 (2006) 3005–3008.
387
[38] C. Yang, A. Nakamura, G. Fukuhara, et al., Pressure and temperature-controlled 388
enantiodifferentiating [4 + 4]-photocyclodimerization of 2-anthracenecarboxy- 389
late mediated by secondary face- and skeleton-modified g-cyclodextrins, J. Org. 390
[22] D. Cao, Y. Kou, J. Liang, et al., A facile and efficient preparation of pillararenes and a
pillarquinone, Angew. Chem. Int. Ed. 48 (2009) 9721–9723.
[23] X.B. Hu, Z. Chen, L. Chen, et al., Pillar[n]arenes (n = 8-10) with two cavities: synthesis,
structures and complexing properties, Chem. Commun. 48 (2012) 10999–11001.
[24] T. Ogoshi, N. Ueshima, F. Sakakibara, T.A. Yamagishi, T. Haino, Conversion from
pillar[5]arene to pillar[6–15]arenes by ring expansion and encapsulation of C60
by pillar[n]arenes with nanosize cavities, Org. Lett. 16 (2014) 2896–2899.
[25] G. Yu, Y. Ma, C. Han, et al., A sugar-functionalized amphiphilic pillar[5]arene:
synthesis, self-assembly in water, and application in bacterial cell agglutination, J.
Am. Chem. Soc. 135 (2013) 10310–10313.
Chem. 71 (2006) 3126–3136.
391
[39] R. Joseph, A. Naugolny, M. Feldman, et al., Cationic pillararenes potently inhibit 392
biofilm formation without affecting bacterial growth and viability, J. Am. Chem. 393
Soc. 138 (2016) 754–757.
[40] M. Sakamoto, Absolute asymmetric photochemistry using spontaneous chiral 395
crystallization, Mol. Supramol. Photochem. 11 (2004) 415–461.
394
396
[41] G. Yu, J. Zhou, J. Shen, G. Tang, F. Huang, Cationic pillar [6] arene/ATP host–guest 397
recognition: selectivity, inhibition of ATP hydrolysis, and application in multidrug 398
[26] J. Fan, H. Deng, J. Li, X. Jia, C. Li, Charge-transfer inclusion complex formation of
tropylium cation with pillar[6]arenes, Chem. Commun. 49 (2013) 6343–6345.
Please cite this article in press as: J.-C. Gui, et al., Enhanced head-to-head photodimers in the photocyclodimerization of