2
3
(a) S. Kawata and Y. Kawata, Chem. Rev., 2000, 100, 1777;
(b) C. C. Corredor, Z. L. Huang, K. D. Belfield, A. R. Morales
and M. V. Bondar, Chem. Mater., 2007, 19, 5165.
(a) W. R. Zipfel, R. M. Williams and W. W. Webb, Nat. Biotechnol.,
2
003, 21, 1369; (b) X. Wang, D. M. Nguyen, C. O. Yanez,
L. Rodriguez, H. Y. Ahn, M. V. Bondar and K. D. Belfield,
J. Am. Chem. Soc., 2010, 132, 12237–12239.
4
5
6
(a) P. A. Bouit, G. Wetzel, G. Berginc, B. Loiseaux, L. Toupet,
P. Feneyrou, Y. Bretonniere, K. Kamada, O. Maury and
C. Andraud, Chem. Mater., 2007, 19, 5325; (b) S. L. Oliveira,
D. S. Correa, L. Misoguti, C. J. L. Constantino, R. F. Aroca,
S. C. Zili and C. R. Mendonca, Adv. Mater., 2005, 17, 1890.
(a) K. Ogawa and Y. Kobuke, Org. Biomol. Chem., 2009, 7, 2241;
(
b) H. A. Collins, M. Khurana, E. H. Moriyama, A. Mariampillai,
Fig. 3 The changes of fluorescence intensity (lex = 488 nm) of PBI1,
Tr–PBI1, BODIPY, and fluorescein after certain periods of irradiation
by the light in the range of 460–490 nm.
E. Dahlstedt, M. Balaz, M. K. Kuimova, M. Drobizhev,
V. D. Yang, D. Phillips, A. Rebane, B. C. Wilson and
H. L. Anderson, Nat. Photonics, 2008, 2, 420.
H. M. Kim and B. R. Cho, Chem. Commun., 2009, 153.
We chose these fluorophores for comparison, because all of
them have strong visible absorption in a range similar to
Tr–PBI, and they are extensively used. The fluorescence
intensities I (lex = 488 nm) of these compounds were recorded
after certain periods of irradiation by the blue light in the range
7 M. H. V. Werts, S. Gmouh, O. Mongin, T. Pons and
B. D. Mireille, J. Am. Chem. Soc., 2004, 126, 16294.
8
(a) H. Zhou, X. Zhao, T. Huang, R. Lu, H. Zhang, X. Qi, P. Xue,
X. Liu and X. Zhang, Org. Biomol. Chem., 2011, 9, 1600; (b) S. Zheng,
A. Leclerp, J. Fu, L. A. Beverina, J. L. Bredas and S. R. Marder, Chem.
Mater., 2007, 19, 432; (c) C. L. Droumaguet, O. Mongin, M. H. V.
Werts and M. Blanchard-Desce, Chem. Commun., 2005, 2802.
0
of 460–490 nm. I is the fluorescent intensity of compounds
9
¨
Y. Avlasevich, C. Li and K. Mullen, J. Mater. Chem., 2010, 20, 3814.
without irradiation. The curves of I/I dependent on irradiation
0
1
0 (a) D. S. Correa, S. L. Oliveira, L. Misoguti, S. C. Zilio,
R. F. Aroca, C. J. L. Constantino and C. R. Mendonca, J. Phys.
Chem. A, 2006, 110, 6433; (b) Z. An, S. A. Odom, R. F. Kelley,
S. Barlow, L. A. Padilha, D. J. Hagan, E. W. Van Stryland,
M. R. Wasielewski and S. R. Marder, J. Phys. Chem. A, 2009,
time are shown in Fig. 3. The tendencies are very clear:
fluorescein’s fluorescence intensity decreases very fast, with only
2
5% of its initial emission after irrdiation for 10 minutes;
BODIPY lost 20% of initial intensity after15 minutes; PBI1’s
intensities show a slow but apparent decrease since it keeps 95%
initial intensity after 16 minutes; however, Tr–PBI maintains
1
13, 5585; (c) K. D. Belfield, M. V. Bondar, F. E. Hernandez and
O. V. Przhonska, J. Phys. Chem. C, 2008, 112, 5618.
1 (a) K. Kamada, K. Ohta, Y. Iwase and K. Kondo, Chem. Phys.
Lett., 2003, 372, 386; (b) B. J. Orr and J. F. Ward, Mol.
Phys., 1971, 20, 513; (c) P. A. Franken and J. F. Ward, Rev.
Mod. Phys., 1963, 35, 23.
1
1
00% intensity after 16 minutes. Thus the photostability of
these compounds follows the order of Tr–PBI 4 PBI1 c
BODIPY c fluorescein. The excellent photostability of
Tr–PBI, even better than PBI1, can be explained by its large,
rigid and ladder-type framework.
12 (a) A. Adronov and J. M. J. Frechet, Chem. Mater., 2000, 12, 2838;
b) M. Velusamy, J.-Y. Shen, J. T. Lin, Y.-C. Lin, C.-C. Hsieh,
(
C.-H. Lai, C.-W. Lai, M.-L. Ho, Y.-C. Chen, P.-T. Chou and
J.-K. Hsiao, Adv. Funct. Mater., 2009, 19, 2388.
In summary, we developed a novel star-shaped chromophore,
Tr–PBI, by fusing three perylenebisimide branches and a truxene
core. Tr–PBI’s d is 11 000 GM at 990 nm and fluorescence
quantum efficiency F is 0.40 in THF; and so, the maximum value
of dF is high up to 4400 GM. In addition, photostability of
Tr–PBI is outstanding, even better than the perylenebisimide
precursor, because of its large, rigid, nearly planar conjugation
system and ladder-type framework. These excellent properties
qualify Tr–PBI as a very competitive chromophore for TPEF
microscopy and other TPA-involving applications. The research
on Tr–PBI in the field of organic electronics is in progress, since
13 (a) S. J. Chung, K. S. Kim, T. C. Lin, G. S. He, J. Swiatkiewicz and
P. N. Prasad, J. Phys. Chem. B, 1999, 103, 10741; (b) P. Macak,
˚
Y. Luo, P. Norman and H. Agren, J. Chem. Phys., 2000, 113, 7055;
(c) J. Yoo, S. K. Yang, M. Y. Jeong, H. C. Ahn, S. J. Jeon and
B. R. Cho, Org. Lett., 2003, 5, 645.
14 (a) Q. D. Zheng, G. S. He and P. N. Prasad, Chem. Mater., 2005,
7, 6004; (b) D. W. Brousmiche, J. M. Serin, J. M. J. Frechet,
1
G. S. He, T. C. Lin, S. J. Chung, P. N. Prasad, R. Kannan and
L. S. Tan, J. Phys. Chem. B, 2004, 108, 8592.
15 (a) Y. Li, H. Zheng, Y. Li, S. Wang, Z. Wu, P. Liu, Z. Gao, H. Liu
and D. Zhu, J. Org. Chem., 2007, 72, 2878; (b) M.-S. Yuan,
Q. Fang, Z.-Q. Liu, J.-P. Guo, H.-Y. Chen, W.-T. Yu, G. Xue
and D.-S. Liu, J. Org. Chem., 2006, 71, 7858.
16 Z. Yuan, Y. Xiao and X. Qian, Chem. Commun., 2010, 46, 2772.
17 Y. Wu, X. Hao, J. Wu, J. Jin and X. Ba, Macromolecules, 2010, 43, 731.
20
21
its two subunits, PBI and truxene, are widely studied and
applied in organic electronics.
1
8 (a) L. Ventelon, S. Charier, L. Moreaux, J. Mertz and B. Blachard-
Desce, Angew. Chem., Int. Ed., 2001, 40, 2098; (b) B. R. Cho,
K. H. Son, S. H. Lee, Y.-S. Song, Y.-K. Lee, S.-J. Jeon, J.-H. Choi,
H. Lee and M. Cho, J. Am. Chem. Soc., 2001, 123, 10039.
We thank National Natural Science Foundation of China
(No. 21174022, 61078067) and Specialized Research Fund for the
Doctoral Program of Higher Education (No. 20110041110009)
for financial support.
19 (a) M. Pawlicki, H. A. Collins, R. G. Denning and H. L. Anderson,
Angew. Chem., Int. Ed., 2009, 48, 3244; (b) N. Aratani, D. Kim and
A. Osuka, Chem.–Asian J., 2009, 4, 1172; (c) J. Shao, Z. Guan,
Y. Yan, C. Jiao, Q. H. Xu and C. Chi, J. Org. Chem., 2011, 76, 780.
2
0 (a) X. Zhan, A. Facchetti, S. Barlow, T. J. Marks, M. A. Ratner,
M. R. Wasielewski and S. R. Marder, Adv. Mater., 2011, 23, 268;
(b) F. Wurthner and M. Stolte, Chem. Commun., 2011, 47,
5109–5115.
Notes and references
1
(a) G. S. He, L. S. Tan, Q. Zheng and P. N. Prasad, Chem. Rev.,
2
2
008, 108, 1245; (b) H. M. Kim and B. R. Cho, Acc. Chem. Res.,
009, 42, 863; (c) F. Terenziani, C. Katan, E. Badaeva, S. Tretiak
21 (a) Y. Sun, K. Xiao, Y. Liu, J. Wang, J. Pei, H. Yu and D. Zhu,
Adv. Funct. Mater., 2005, 15, 818; (b) A. L. Kanibolotsky,
R. Berridge, P. J. Skabara, I. F. Perepichka, D. D. C. Bradley
and M. Koeberg, J. Am. Chem. Soc., 2004, 126, 13695;
(c) W.-Y. Lai, R. Xia, D. D. C. Bradley and W. Huang, Chem.–
Eur. J., 2010, 16, 8471.
and M. Blanchard-Desce, Adv. Mater., 2008, 20, 4641;
d) C. N. LaFratta, J. T. Fourkas, T. Baldacchini and
(
R. A. Farrer, Angew. Chem., 2007, 119, 6352; (e) W. Zhou,
S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack,
C. K. Ober, J. W. Perry and S. R. Marde, Science, 2002, 296, 1106.
4
340 Chem. Commun., 2012, 48, 4338–4340
This journal is c The Royal Society of Chemistry 2012