V. Arjunan et al. / Spectrochimica Acta Part A 74 (2009) 642–649
649
mode at 169 cm−1 is attributed to the in-plane bending vibration
and the out of plane bending mode of N–Cl is assigned to the line
at 101 cm−1 in Raman.
basis set. The basis sets 6–31G(d,p) and 6–311++G(d,p), are equally
reliable for the determination of the electronic structure by quan-
tum chemical investigations of organic compounds.
4.3.5. Methyl group vibrations
References
The –CH3 group frequencies, make a significant contribution to
2MIDO. Under CS symmetry, the asymmetric stretching and asym-
metric deformation modes of the –CH3 group would be expected to
be depolarized under Aꢀꢀ symmetry species. The symmetric methyl
stretching, ꢂs(CH3) mode is established at 2951 and 2949 cm−1
in the infrared and Raman, respectively. The asymmetric methyl
stretching, ꢂa(CH3) vibrations under Aꢀꢀ and Aꢀ species of 2MIDO are
observed at 3038 and 3022 cm−1. The asymmetrical methyl defor-
mation mode, ıa(CH3) is observed at 1468 cm−1 under Aꢀꢀ species.
The symmetrical methyl deformation mode, ıs(CH3), is seen at
1438 cm−1 in IR and at 1435 cm−1 in Raman. The methyl defor-
mational modes mainly coupled with the CNC in-plane bending
vibration. The –CH3 rocking and wagging modes of 2MIDO are given
in Table 4. All assignments were based on the visualization of nor-
mal mode displacement vectors utilizing the Gaussview [39] and
on frequency agreement with reported literatures.
Computed harmonic frequencies typically overestimate vibra-
tional fundamentals due to basis set truncation and neglect of
observed and theoretically computed frequencies for each vibra-
tional modes of the compounds under DFT–B3LYP method scale
homogeneous scaling has been utilised. Initially, all scaling fac-
tors have been kept fixed at a value of 1.0 to produce the pure DFT
butions (PEDs) which are given in Tables 3 and 4. Subsequently,
the B3LYP/6–31G(d,p) and B3LYP/6–311++G(d,p) frequencies were
scaled by using the empirical scaling factors, 0.965 and 0.97 respec-
tively, as suggested by Scott and Radom [49] and Wong [50].
The resultant scaled frequencies are also listed in Tables 3 and 4.
B3LYP/6–311++G(d,p) correction factor is much closer to unity
culated by using the B3LYP functional with 6–311++G(d,p) basis
set can be utilised to eliminate the uncertainties in the funda-
mental assignments in infrared and Raman vibrational spectra
[51].
[1] E. Kolvaria, A.G. Choghamaranib, P. Salehic, F. Shirinid, M.A. Zolfigol, J. Iran.
Chem. Soc. 4 (2007) 126.
[2] A. Khazaei, A. Aminmanesh, A. Rostami, J. Chem. Res.-S (2004) 695.
[3] M.W. Mosher, G.W. Estes, J. Am. Chem. Soc. 99 (1977) 6928.
[4] J.D. Copp, G.A. Thrap, Org. Proc. Res. Dev. 1 (1997) 92.
[5] T. Felix, U.S. Patent No. 4,728,498 (1998).
[6] N. Jayasree, P. Indrasenan, Talanta 32 (1985) 1067.
[7] C. Villagrán, C.E. Banks, W.R. Pitner, C. Hardacre, R.G. Compton, Ultrason.
Sonochem. 12 (2005) 423.
[8] Y. Chen, M.R. Topp, Chem. Phys. 283 (2002) 249.
[9] A.G. Griesbeck, H. Görner, J. Photochem. Photobiol. 129A (1999) 111.
[10] M.D. Halls, R. Aroca, D.S. Terekhov, A. D’Ascanio, C.C. Leznoff, Spetrochim. Acta
54A (1998) 305.
[11] V. Krishnakumar, V. Balachandran, T. Chithambarathanu, Spetrochim. Acta 62A
(2005) 918.
[12] Y. Hase, J. Mol. Struct. 48 (1978) 33.
[13] I.G. Binev, B.A. Stamboliyska, Y.I. Binev, E.A. Velcheva, J.A. Tsenov, J. Mole. Struct.
513 (1999) 231.
[14] A.D. Becke, Phys. Rev. A 38 (1988) 3098.
[15] K. Golcuk, A. Altun, M. Kumru, Spectrochim. Acta 59A (2003) 1841.
[16] M.E. Vaschetto, B.A. Retamal, A.P. Monkman, J. Mol. Struct.: Theochem. 468
(1999) 209.
[17] A.D. Becke, J. Chem. Phys. 98 (1993) 5648.
[18] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785.
[19] D.A. Forsyth, A.B. Sebag, J. Am. Chem. Soc. 119 (1997) 9483.
[20] Z.P. Liang, J. Li, Acta Crystallogr. E 62 (2006) 4274.
[21] P. Hohenberg, W. Kohn, Phys. Rev. 136 (1964) B864.
[22] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,
J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar,
J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson,
H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.
Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian,
J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J.
Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, A. Voth, P.
Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain,
O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q.
Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P.
Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A.
Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson,W. Chen, M.W.Wong, C.
Gonzalez, J.A. Pople, Gaussian Inc., Wallingford, CT, 2004.
[23] H.B. Schlegel, J. Comput. Chem. 3 (1982) 214.
[24] G. Zerbi, in: Person, Zerbi (Eds.), Vibrational Intensities in Infrared and Raman
Spectroscopy, Elsevier, New York, 1982.
[25] E.B. Wilson Jr., J. Chem. Phys. 7 (1939) 1047.
[26] E.B. Wilson Jr., J. Chem. Phys. 9 (1941) 76.
[27] E.B. Wilson Jr., J.C. Decius, P.C. Cross, Molecular Vibrations, McGraw Hill, New
York, 1955.
[28] H. Fuhrer, V.B. Kartha, K.L. Kidd, P.J. Kruger, H.H. Mantsch, Computer Program
for Infrared and Spectrometry, Normal Coordinate Analysis, vol.5, National
Research Council, Ottawa, Canada, 1976.
[29] S. Weng Ng, Acta Crystallogr. C 48 (1992) 1695.
[30] E. Matzat, Acta Crystallogr. B 28 (1972) 415.
5. Conclusions
[31] N. Nagel, H. Bock, J.W. Best, Acta Chem. C 52 (1996) 1344.
[32] C.M. Lee, W.D. Kumler, J. Org. Chem. 27 (1962) 2055.
[33] Y.J. Hase, J. Mol. Struct. 48 (1978) 33.
The molecular structural parameters, thermodynamic proper-
ties and vibrational frequencies of the fundamental modes of the
optimised geometry of 2CIDO and 2MIDO have been determined
from DFT–B3LYP method. The geometries of the compounds are
optimised without any symmetry constraints using the DFT/B3LYP
method with 6–31G(d,p) and 6–311++G(d,p) basis set. The complete
vibrational assignment and analysis of the compounds have been
carried out. The effects of substituents (chloro and methyl group) on
vibrational frequencies and on the structural parameters were anal-
ysed. The theoretical values 2CIDO and 2MIDO obtained from the
DFT method were compared with 1H-isoindole-1,3(2H)-dione. The
energy, entropy and dipole moment values of 2CIDO shows that it
is more stable than that of 2MIDO and 1H-isoindole-1,3(2H)-dione,
due to the electronic effect of chlorine and more resonance stabil-
isation of the ring. The overall agreement between the theoretical
wavenumbers of the compounds and the experimental wavenum-
bers is good. The Raman relative intensity pattern in this method is
successfully predicted by theoretical computations with 6-31G(d,p)
[34] A. Bigoto, V. Galaso, Spectrochim. Acta 35A (1979) 725.
[35] J.F. Arenas, J.I. Marcos, F.J. Ramirez, Appl. Spectrosc. 43 (1989) 118.
[36] N. Puviarasan, V. Arjunan, S. Mohan, Turk. J. Chem. 26 (2002) 323.
[37] V. Arjunan, S. Mohan, J. Mol. Struct. 892 (2008) 289.
[38] A. Bigotto, V. Galasso, Spectrochim. Acta 35A (1979) 725.
[39] A.E. Frisch, A.B. Nielsen, A.J. Holder, Gaussian Inc., Pittsburgh, PA, USA, 2000.
[40] J.A. Pople, H.B. Schlegel, R. Krishnan, J.S. Defrees, J.S. Binkley, M.J. Frisch, R.A.
Whiteside, Int. J. Quantum Chem.: Quantum Chem. Symp. 15 (1981) 269.
[41] H.F. Hameka, J.O. Jensen, J. Mol. Struct.: Theochem. 362 (1996) 325.
[42] C.P. Vlahacos, H.F. Hameka, J.O. Jensen, Chem. Phys. Lett. 259 (1996) 283.
[43] D. Zeroka, J.O. Jensen, J. Mol. Struct.: Theochem. 425 (1998) 181.
[44] K.K. Ong, J.O. Jensen, H.F. Hameka, J. Mol. Struct.: Theochem. 459 (1999) 131.
[45] J.O. Jensen, A. Banerjee, C.N. Merrow, D. Zeroka, J.M. Lochner, J. Mol. Struct.:
Theochem. 531 (2000) 323.
[46] J.O. Jensen, D. Zeroka, J. Mol. Struct.: Theochem. 487 (1999) 267.
[47] H.F. Hameka, J.O. Jensen, J. Mol. Struct.: Theochem. 331 (1995) 203.
[48] M.W. Ellzy, J.O. Jensen, H.F. Hameka, J.G. Kay, D. Zeroka, Spectrochim. Acta 57A
(2001) 2417.
[49] A.P. Scott, L. Radom, J. Phys. Chem. 100 (1996) 16502.
[50] M.W. Wong, Chem. Phys. Lett. 256 (1996) 391.
[51] S.Y. Lee, B.H. Boo, Bull. Korean Chem. Soc. 17 (1996) 760.