Y. Xu et al. / Bioorg. Med. Chem. Lett. 15 (2005) 4304–4307
4307
8. Zhong, G. F.; Lerner, R. A.; Barbas, C. F. Angew. Chem.
Int. Ed. Engl. 1999, 38, 3738.
9. Coates, H. Ann. Appl. Biol. 1949, 36, 156.
10. Levine, B. S.; Murphy, S. D. Toxicol. Appl. Pharmacol.
1976, 37, 166.
paraoxon-inactivated antibodies were able to regenerate
activity, thus restoring the reactive residue in the combin-
ing site. Inhibition studies using hapten analog 2 as
inhibitor have further confirmed these findings.
11. Costa, L. G.; Schwab, B. W.; Murphy, S. D. Biochem.
Pharmacol. 1982, 31, 3407.
12. Murphy, S. D.; Cheever, K. L. Toxicol. Appl. Pharmacol.
1971, 19, 366.
13. Costa, L. G.; Shao, M.; Basker, K.; Murphy, S. D. Chem.
Biol. Interact. 1984, 48, 261.
14. Butler, V. P. Pharmacol. Rev. 1982, 34, 109.
15. Sullivan, J. B. Ann. Emerg. Med. 1987, 16, 938.
16. Leikin, J. B.; Goldmanleikin, R. E.; Evans, M. A.; Wiener,
S.; Hryhorczuk, D. O. J. Toxicol. Clin. Toxicol. 1991, 29,
59.
17. Cohen, S.; Lacher, J. R.; Park, J. D. J. Am. Chem. Soc.
1959, 81, 3480.
18. Park, J. D.; Lacher, J. R.; Cohen, S. J. Am. Chem. Soc.
1962, 84, 2919.
We have shown that the squaric monoester monoamide
motif is an effective reactive immunogen for the recovery
of antibodies with reactive residue(s) in their binding
pockets. It is important to note that the initial substrate
we used in our study to assay antibody activity was in
fact covalent in nature and thus limited our analysis to
a single turnover. Future studies will continue probing
the kinetic properties of these two antibodies with addi-
tional substrates in an effort to uncover true catalysis.
However, we note in their current state, antibodies
2D4 and 3C8 could be useful tools for investigating
immunotherapy for paraoxon poisoning.
19. Cohen, S.; Cohen, S. G. J. Am. Chem. Soc. 1966, 88, 1533.
20. Schwartz, L. M.; Howard, L. O. J. Phys. Chem. 1971, 75,
1798.
Acknowledgments
This work is supported by the Skaggs Institute for Chem-
ical Biology. We are grateful to Dr. Anita Wentworth, Jon
Ashley, Reshma Jagasia, and Laura McAllister for their
advice and help with manuscript preparation.
21. Schwartz, L. M.; Howard, L. O. J. Phys. Chem. 1970, 74,
4374.
22. Sprenger, H. E.; Ziegenbe, W. Angew. Chem. Int. Ed. Engl.
1966, 5, 894.
23. Tedesco, P. H.; Walton, H. F. Inorg. Chem. 1969, 8, 932.
24. Schaeffe, H. Microchem. J. 1972, 17, 443.
25. Wang, Y.; Stucky, G. D. J. Chem. Soc. Perkin Trans.
1974, 2, 925.
References and notes
26. Neuse, E.; Green, B. Annalen Der Chemie-Justus Liebig
1973, 619.
27. Brand, S.; de Candole, B. C.; Brown, J. A. Org. Lett. 2003,
5, 2343.
28. Izumi, M.; Okumura, S.; Yuasa, H.; Hashimoto, H.
J. Carbohydr. Chem. 2003, 22, 317.
29. Sato, K.; Tawarada, R.; Seio, K.; Sekine, M. Eur. J. Org.
Chem. 2004, 2142.
1. Wirsching, P.; Ashley, J. A.; Lo, C. H. L.; Janda, K. D.;
Lerner, R. A. Science 1995, 270, 1775.
2. Lo, C. H. L.; Wentworth, P.; Jung, K. W.; Yoon, J.;
Ashley, J. A.; Janda, K. D. J. Am. Chem. Soc. 1997, 119,
10251.
3. Datta, A.; Wentworth, P.; Shaw, J. P.; Simeonov, A.;
Janda, K. D. J. Am. Chem. Soc. 1999, 121, 10461.
4. Wentworth, P.; Wentworth, A. D.; Janda, K. D. Abstr.
Pap. Am. Chem. Soc. 1999, 218, U914.
5. Lin, C. H.; Hoffman, T. Z.; Xie, Y. L.; Wirsching, P.;
Janda, K. D. Chem. Commun. 1998, 1075.
30. Kohler, G.; Milstein, C. Nature 1975, 256, 495.
31. Kohler, G.; Howe, S. C.; Milstein, C. Eur. J. Immunol.
1976, 6, 292.
32. Lavey, B. J.; Janda, K. D. J. Org. Chem. 1996, 61, 7633.
33. Janda, K. D.; Weinhouse, M. I.; Schloeder, D. M.;
Lerner, R. A.; Benkovic, S. J. J. Am. Chem. Soc. 1990,
112, 1274.
34. Janda, K. D.; Weinhouse, M. I.; Danon, T.; Pacelli, K. A.;
Schloeder, D. M. J. Am. Chem. Soc. 1991, 113, 5427.
6. Sato, K.; Seio, K.; Sekine, M. J. Am. Chem. Soc. 2002,
124, 12715.
7. Barbas, C. F.; Heine, A.; Zhong, G. F.; Hoffmann, T.;
Gramatikova, S.; Bjornestedt, R.; List, B.; Anderson, J.;
Stura, E. A.; Wilson, I. A.; Lerner, R. A. Science 1997,
278, 2085.