Filosa et al.
Comprehensive Report
*M−7PF6¯]7+ (calcd m/z: 818.87), 698.25 *M−8PF6¯]8+ (calcd m/z:
698.27), 604.55 *M−9PF6¯]9+ (calcd m/z: 604.58), 529.59
*M−10PF6¯]10+ (calcd m/z: 529.62).
2018, 28, 1803629; (b) Aoki, T.; Sakai, H.; Ohkubo, K.; Sakanoue, T.;
Takenobu, T.; Fukuzumi, S.; Hasobe, T. Ultrafast Photoinduced Elec-
tron Transfer in Face-to-Face Charge-Transfer π-Complexes of Planar
Porphyrins and Hexaazatriphenylene Derivatives. Chem. Sci. 2015, 6,
1498–1509; (c) Cho, T. J.; Shreiner, C. D.; Hwang, S.-H.; Moorefield, C.
N.; Courneya, B.; Godínez, L. A.; Manríquez, J.; Jeong, K.-U.; Cheng, S.
Z. D.; Newkome, G. R. 5,10,15,20-Tetrakis [4'-(Terpyridinyl)phenyl]-
porphyrin and Its Ru(II) Complexes: Synthesis, Photovoltaic Proper-
ties, and Self-assembled Morphology. Chem. Commun. 2007, 4456–
4458.
S2: L2 (3.1 mg, 1.9 μmol) was dissolved in 4 mL MeOH/CHCl3
(3/1, V/V) solvent, and Zn(NO3)2·6H2O (1.1 mg, 3.8 μmol) was
added in the above solution. The mixture was heated at 50 °C for
5 h, then precipitated in 10 mL NH4PF6 (80 mg 0.49 mmol) solu-
tion in MeOH. The solid was collected by centrifugation, washed
with fresh methanol and water. After drying, 3.9 mg purple solid
1
was obtained, with a yield of 89%. H NMR (500 MHz, CD3CN) δ:
9.03 (s, 4H, Hf), 9.01 (s, 4H, Hf), 8.91 (s, 8H, Ha), 8.73 (d, J = 7.6 Hz,
4H, He), 8.55 (s, 4H, Hd), 8.44 (d, J = 7.9 Hz, 4H, Hb), 8.37 (d, J = 8.1
Hz, 8H, Hg), 8.17 (t, J = 7.7 Hz, 4H, Hc), 7.59—7.48 (m, 16H, Hj,h),
7.59—7.48 (m, 16H, Hj,h), 6.70 (dd, J = 7.9, 5.1 Hz, 8H, Hi). 13C NMR
(125 MHz, CD3CN) δ: 156.99, 150.47, 149.89, 149.52, 147.73,
147.60, 144.32, 140.71, 135.83, 135.41, 135.15, 132.50, 132.10,
128.09, 127.05, 123.08, 122.70, 122.50, 120.14. ESI-MS (m/z):
846.08 *M−7PF6¯]7+ (calcd m/z: 816.12), 722.18 *M−8PF6¯]8+ (calcd
m/z: 722.23), 626.04 *M−9PF6¯]9+ (calcd m/z: 625.99), 548.63
*M−10PF6¯]10+ (calcd m/z: 548.59), 485.57 *M−11PF6¯]11+ (calcd
m/z: 485.54).
[7] (a) Bedioui, F.; Devynck, J.; Bied-Charreton, C. Immobilization of
Metalloporphyrins in Electropolymerized Films: Design and Applica-
tions. Acc. Chem. Res. 1995, 28, 30–36; (b) Walter, M. G.; Rudine, A.
B.; Wamser, C. C. Porphyrins and Phthalocyanines in Solar Photovol-
taic Cells. J. Porphyr. Phthalocyanines 2010, 14, 759–792; (c) Hasobe,
T.; Imahori, H.; Kamat, P. V.; Ahn, T. K.; Kim, S. K.; Kim, D.; Fujimoto,
A.; Hirakawa, T.; Fukuzumi, S. Photovoltaic Cells Using Composite
Nanoclusters of Porphyrins and Fullerenes with Gold Nanoparticles.
J. Am. Chem. Soc. 2005, 127, 1216–1228.
[8] Górski, Ł.; Malinowska, E.; Parzuchowski, P.; Zhang, W.; Meyerhoff,
M. E. Recognition of Anions Using Metalloporphyrin-Based Ion-Se-
lective Membranes: State-of-the-Art. Electroanalysis 2003, 15, 1229–
1235.
Supporting Information
The supporting information for this article is available on the
[9] Meng, W.; Breiner, B.; Rissanen, K.; Thoburn, J. D.; Clegg, J. K.;
Nitschke, J. R. A Self-Assembled M8L6 Cubic Cage that Selectively
Encapsulates Large Aromatic Guests. Angew. Chem. Int. Ed. 2011, 50,
3479–3483.
[10] (a) Białek, M. J.; Sprutta, N.; Latos-Grażyoski, L. Coordination-Induced
Molecular Tweezing: Ruthenium Clusters Docked at Azuliporphyrin-
ogens. Inorg. Chem. 2016, 55, 12061–12073; (b) Sun, D.; Tham, F. S.;
Reed, C. A.; Chaker, L.; Boyd, P. D. W. Supramolecular Fullerene-
Porphyrin Chemistry. Fullerene Complexation by Metalated “Jaws
Porphyrin” Hosts. J. Am. Chem. Soc. 2002, 124, 6604–6612; (c) Sun,
D.; Tham, F. S.; Reed, C. A.; Chaker, L.; Burgess, M.; Boyd, P. D. W.
Porphyrin−Fullerene Host−Guest Chemistry. J. Am. Chem. Soc. 2000,
122, 10704–10705.
[11] (a) Otsuki, J. Supramolecular Approach Towards Light-Harvesting
Materials Based on Porphyrins and Chlorophylls. J. Mater. Chem. A
2018, 6, 6710–6753; (b) Wiester, M. J.; Ulmann, P. A.; Mirkin, C. A.
Enzyme Mimics Based Upon Supramolecular Coordination Chemistry.
Angew. Chem. Int. Ed. 2011, 50, 114–137.
Acknowledgement
We gratefully acknowledge the support from the National
Science Foundation (CHE-1506722) and National Institutes of
Health (R01GM128037).
References
[1] Lemberg, R. Porphyrins in Nature. Progress in the Chemistry of Or-
ganic Natural Products, Ed.: Ƶechmeister, L., Springer Vienna, Vienna,
1954, pp. 299–349.
[2] Hamza, I.; Dailey, H. A. One Ring to Rule Them All: Trafficking of
Heme and Heme Synthesis Intermediates in the Metazoans. BBA-Mol.
Cell Res. 2012, 1823, 1617–1632.
[3] Fox, H. M.; Gardiner, J. S. The Oxygen Affinity of Chlorocruorin. Proc.
Royal Soc. Lond. B 1932, 111, 356–363.
[12] Hong, S.; Rohman, M. R.; Jia, J.; Kim, Y.; Moon, D.; Kim, Y.; Ko, Y. H.;
Lee, E.; Kim, K. Porphyrin Boxes: Rationally Designed Porous Organic
Cages. Angew. Chem. Int. Ed. 2015, 54, 13241–13244.
[4] (a) Yoshioka, E.; Chelakkot, V. S.; Licursi, M.; Rutihinda, S. G.; Som, J.;
Derwish, L.; King, J. J.; Pongnopparat, T.; Mearow, K.; Larijani, M.;
Dorward, A. M.; Hirasawa, K. Enhancement of Cancer-Specific Pro-
toporphyrin IX Fluorescence by Targeting Oncogenic Ras/MEK Path-
way. Theranostics 2018, 8, 2134–2146; (b) Rajora, M. A.; Lou, J. W. H.;
Zheng, G. Advancing Porphyrin's Biomedical Utility via Supramolecu-
lar Chemistry. Chem. Soc. Rev. 2017, 46, 6433–6469; (c) Naik, A.;
Rubbiani, R.; Gasser, G.; Spingler, B. Visible-Light-Induced Annihila-
tion of Tumor Cells with Platinum-Porphyrin Conjugates. Angew.
Chem. Int. Ed. 2014, 53, 6938–6941.
[5] (a) Guillén, M. G.; Gámez, F.; Roales, J.; Lopes-Costa, T.; Pinto, S. M.
A.; Calvete, M. J. F.; Pereira, M. M.; Pedrosa, J. M. Molecular-Based
Selection of Porphyrins Towards the Sensing of Explosives in the Gas
Phase. Sens. Actuator B-Chem. 2018, 260, 116–124; (b) Fagadar-
Cosma, E.; Vlascici, D.; Birdeanu, M.; Fagadar-Cosma, G. Novel Fluo-
rescent pH Sensor Based on 5-(4-Carboxy-phenyl)-10,15,20-tris-
(phenyl)-porphyrin. Arab. J. Chem. 2014; (c) Lvova, L.; Di Natale, C.;
Paolesse, R. Porphyrin-Based Chemical Sensors and Multisensor
Arrays Operating in the Liquid Phase. Sens. Actuator B-Chem. 2013,
179, 21–31.
[13] (a) Tashiro, K.; Aida, T.; Zheng, J.-Y.; Kinbara, K.; Saigo, K.; Sakamoto,
S.; Yamaguchi, A. Cyclic Dimer of Metalloporphyrin Forms a Highly
Stable Inclusion Complex with C60. J. Am. Chem. Soc. 1999, 121,
9477–9478; (b) Zheng, J.-Y.; Tashiro, K.; Hirabayashi, Y.; Kinbara, K.;
Saigo, K.; Aida, T.; Sakamoto, S.; Yamaguchi, K. Cyclic Dimers of Met-
alloporphyrins as Tunable Hosts for Fullerenes: A Remarkable Effect
of Rhodium(III). Angew. Chem. Int. Ed. 2001, 40, 1857–1861; (c) Shoji,
Y.; Tashiro, K.; Aida, T. Selective Extraction of Higher Fullerenes Using
Cyclic Dimers of Zinc Porphyrins. J. Am. Chem. Soc. 2004, 126, 6570–
6571.
[14] (a) Song, J.; Aratani, N.; Shinokubo, H.; Osuka, A. A Porphyrin Nano-
barrel That Encapsulates C60. J. Am. Chem. Soc. 2010, 132, 16356–
16357; (b) Schmittel, M.; He, B.; Mal, P. Supramolecular Multicom-
ponent Self-Assembly of Shape-Adaptive Nanoprisms: Wrapping up
C60 with Three Porphyrin Units Org. Lett. 2008, 10, 2513–2516; (c)
Fujita, N.; Biradha, K.; Fujita, M.; Sakamoto, S.; Yamaguchi, K. A Por-
phyrin Prism: Structural Switching Triggered by Guest Inclusion. An-
gew. Chem. Int. Ed. 2001, 40, 1718–1721.
[15] (a) Seidel, S. R.; Stang, P. J. High-Symmetry Coordination Cages via
Self-Assembly. Acc. Chem. Res. 2002, 35, 972–983; (b) Chakrabarty,
R.; Mukherjee, P. S.; Stang, P. J. Supramolecular Coordination: Self-
Assembly of Finite Two- and Three-Dimensional Ensembles. Chem.
Rev. 2011, 111, 6810–6918; (c) Cook, T. R.; Stang, P. J. Recent De-
[6] (a) Limburg, B.; Thomas, J. O.; Holloway, G.; Sadeghi, H.; Sangtarash,
S.; Hou, C. Y. I.; Cremers, J.; Narita, A.; Müllen, K.; Lambert, C. J.;
Briggs, G. A. D.; Mol, J. A.; Anderson, H. L. Anchor Groups for Gra-
phene-Porphyrin Single-Molecule Transistors. Adv. Funct. Mater.
1172
© 2019 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Chin. J. Chem. 2019, 37, 1167-1173