Organic Letters
Letter
P.; Grutzner, J. B.; Harris, D. L.; Winstein, S. J. Am. Chem. Soc. 1970,
92, 3478−3480. (c) Ahlberg, P.; Harris, D. L.; Winstein, S. J. Am.
Chem. Soc. 1970, 92, 4454−4456. (d) Engdahl, C.; Ahlberg, P. J. J.
Phys. Org. Chem. 1990, 3, 349−357.
(4) For recent reviews, see: (a) Rowan, S. J.; Cantrill, S. J.; Cousins,
G. R. L.; Sanders, J. K. M.; Stoddart, J. F. Angew. Chem., Int. Ed. 2002,
41, 898−952. (b) Corbett, P. T.; Leclaire, J.; Vial, L.; West, K. R.;
Wietor, J.-L.; Sanders, J. K. M.; Otto, S. Chem. Rev. 2006, 106, 3652−
3711. (c) Jin, Y.; Yu, C.; Denman, R. J.; Zhang, W. Chem. Soc. Rev.
2013, 42, 6634−6654.
transition structure energies were calculated, and the local
kinetics modeled. The predicted half-lives range between
0.0017 s and 7.8 min. Isomer 6:D has a surprisingly short half-
life which is traced to an intramolecular hydrogen bond,
stabilizing one of the first-generation transition structures (see
In summary, we demonstrated the synthesis of a range of
disubstituted bullvalenes and the first synthesis of differentially
trisubstituted bullvalenes. Low-temperature NMR experiments
reveal the populated isomer distributions, in broad agreement
with DFT calculations. Kinetic simulations provide a new
window into the rich dynamic nature of these systems and help
rationalize the meta-stability of trisubstituted bullvalene major
isomers. The anticipation of kinetic and thermodynamic
features within heavily substituted bullvalenes provides a
framework through which to navigate these complex systems
and design future shape-selective molecular devices.
(5) (a) Lippert, A. R.; Keleshian, V. L.; Bode, J. W. Org. Biomol.
Chem. 2009, 7, 1529−1532. (b) Lippert, A. R.; Naganawa, A.;
Keleshian, V. L.; Bode, J. W. J. Am. Chem. Soc. 2010, 132, 15790−
15799. (c) He, M.; Bode, J. W. Proc. Natl. Acad. Sci. U. S. A. 2011,
108, 14752−14756. (d) Larson, K. K.; He, M.; Teichert, J. F.;
Naganawa, A.; Bode, J. W. Chem. Sci. 2012, 3, 1825−1828.
(e) Teichert, J. F.; Mazunin, D.; Bode, J. W. J. Am. Chem. Soc.
2013, 135, 11314−11321. (f) He, M.; Bode, J. W. Org. Biomol. Chem.
2013, 11, 1306−1317.
(6) Saunders, M. Tetrahedron Lett. 1963, 4, 1699−1702.
(7) Poupko, R.; Zimmermann, H.; Muller, K.; Luz, Z. J. Am. Chem.
Soc. 1996, 118, 7995−8005.
ASSOCIATED CONTENT
* Supporting Information
■
S
(8) Rebsamen, K.; Roettele, H.; Schroeder, G. Chem. Ber. 1993, 126,
1429−33.
The Supporting Information is available free of charge on the
(9) (a) Ferrer, S.; Echavarren, A. M. Angew. Chem., Int. Ed. 2016, 55,
́
11178−11182. (b) McGonigal, P. R.; de Leon, C.; Wang, Y.; Homs,
A.; Solorio-Alvarado, C. R.; Echavarren, A. M. Angew. Chem., Int. Ed.
2012, 51, 13093−13096.
Experimental details and characterization data for all
new compounds. Details of computational methods and
̌
(10) Yahiaoui, O.; Pasteka, L. F.; Judeel, B.; Fallon, T. Angew. Chem.,
Int. Ed. 2018, 57, 2570−2574.
List of computational results (PDF)
(11) (a) Achard, M.; Mosrin, M.; Tenaglia, A.; Buono, G. J. Org.
Chem. 2006, 71, 2907−2910. (b) D’yakonov, V. A.; Kadikova, G. N.;
Dzhemileva, L. U.; Gazizullina, G. F.; Ramazanov, I. R.; Dzhemilev, U.
M. J. Org. Chem. 2017, 82, 471−480.
AUTHOR INFORMATION
Corresponding Authors
■
(12) (a) Jones, M.; Scott, L. T. J. Am. Chem. Soc. 1967, 89, 150−151.
(b) Jones, M.; Reich, S. D.; Scott, L. T. J. Am. Chem. Soc. 1970, 92,
3118−3126.
(13) de Meijere, A.; Lee, C.-H.; Bengtson, B.; Pohl, E.; Kozhus, S. I.;
Schreiner, P. R.; Boese, R.; Haumann, T. Chem. - Eur. J. 2003, 9,
5481−5488.
(14) In principle these cycloadditions could proceed in any of eight
distinct modes, leading to eight regioisomers. In practice the
trimethylsilyl group is primarily directed to the bridging alkene. See
(15) Disubstituted bullvalenes exist as ensembles of either 15
isomers (R1, R1) or 30 isomers (R1, R2), respectively. Trisubstituted
systems will exist as ensembles of 42 (R1, R1, R1), 120 (R1, R1, R2), or
240 isomers (R1, R2, R3), respectively.
(16) This feature was previously described by Bode, ref 5f.
(18) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (b) Lee, C.;
Yang, W.; Parr, R. G. Phys. Rev. B: Condens. Matter Mater. Phys. 1988,
37, 785. (c) Rappoport, D.; Furche, F. J. Chem. Phys. 2010, 133,
134105. (d) Barone, V.; Cossi, M. J. Phys. Chem. A 1998, 102, 1995.
(e) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Comput. Chem.
2003, 24, 669. (f) Neese, F. WIREs Comput. Mol. Sci. 2012, 2, 73.
cessed Nov 19, 2019.
ORCID
́
̌
̌
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We gratefully acknowledge the New Zealand Royal Society
(Marsden Fund No. 15-MAU-154). We gratefully thank Ms.
Eliza Tarcoveanu (Australian National University, Canberra)
for assistance with NMR measurements. Calculations were
performed using the supercomputing infrastructure of the
Computing Center of the Slovak Academy of Sciences
acquired in projects ITMS 26230120002 and 26210120002
supported by the Research & Development Operational
Programme funded by the ERDF. LFP is grateful for the
support from the Slovak Research and Development Agency
(grant no. APVV-15-0105) and the Scientific Grant Agency of
the Slovak Republic (grant no. 1/0777/19).
REFERENCES
■
737.
(1) von E. Doering, W.; Roth, W. R. Tetrahedron 1963, 19, 715−
̈
(2) (a) Schroder, G. Angew. Chem., Int. Ed. Engl. 1963, 2, 481−482.
̈
(b) Schroder, G. Angew. Chem. 1963, 75, 722−722.
(3) The barbaryl cation and radical represent the other totally
degenerate cage hydrocarbons: (a) Ahlberg, P.; Harris, D. L.;
Winstein, S. J. Am. Chem. Soc. 1970, 92, 2146−2147. (b) Ahlberg,
E
Org. Lett. XXXX, XXX, XXX−XXX