58
X.Q. Wang et al. / Thermochimica Acta 414 (2004) 53–58
According to above-mentioned analyses, we presume that
Acknowledgements
the following reaction scheme is the most reasonable to de-
scribe the decomposition process (where 0 ≤ x ≤ 1):
This work is supported by an “863” grant (No.
2002AA313070) National Advanced Materials Commit-
tee of China (NAMCC), a grant (No. 50272037) of Na-
tional Natural Science Foundation of China (NNSFC), the
Youth Science Foundation of Shandong University (No.
11370053187029) and the Doctoral Startup Foundation of
Shandong University (No. 10000052182149).
FeHg(SCN)4 + 4O2 → FeHg(1−x)S(2−x) + 2CO2
+ 2SO2 + 2N2 + x HgS
FeHg(1−x)S(2−x) + O2 → Fe2O3 + (1 − x)HgS + SO2
4. Conclusions
References
The preparation of FMTC has been described. Spectro-
scopic properties have been established by using various
ways. The structure of FMTC were derived from powder
X-ray diffraction data, and the tetragonal unit-cell param-
eters calculated by DICVOL91 program according to the
values of 2θ in the XRPD patterns are a = 11.2407 Å,
c = 4.2909 Å, V = 542.17 Å3, which are comparable
with the results determined by an R3m/E four-circle X-ray
diffractometer. Its vibrational spectra were studied by IR
and Raman spectroscopy, which show that the character-
istic vibrational modes of FeHg(SCN)4 crystals consist
of six wavenumber regions: below 100 cm−1, lattice vi-
bration modes; 100–300 cm−1, vibration bands of Hg
and Fe centers (Hg(SCN)4 and Fe(NCS)4 bending vibra-
tion modes); 300–500 cm−1, an SCN bending vibration
mode; 750–800 cm−1, a CS stretching vibration mode;
850–950 cm−1, a doubly degenerate SCN bending vibration
mode; 2100–2200 cm−1, a CN stretching vibration mode.
The optical transmission spectrum exhibits that the UV
transparency of FMTC is inferior to that of CMTC. The
TGA/DTA analyses reveal that the thermal decomposition
of FMTC in air is breakdown of the 3DSS and the formation
of the corresponding metal(II)-sulfides (FeHg(1−x)S(2−x)
(0 ≤ x ≤ 1)), carbon dioxide (CO2), nitrogen gas (N2),
sulfur dioxide (SO2) and ferric oxide (Fe2O3). From the
thermal decomposition scheme, one can see that metal-
lic thiocyanates can be used as the sources to obtain the
low-cost compound–semiconductor thin films consisting of
metal sulfides.
[1] A. Rosenheim, R. Cohn, Z. Anorg. Allgem. Chem. 27 (1901)
280.
[2] J.G. Bergman, J.J. Mcfee, G.R. Crane, Mater. Res. Bull. 5 (1970)
913.
[3] W. Sturmer, U. Deserno, Phys. Lett. A 32 (1970) 539.
[4] D.R. Yuan, M.G. Liu, D. Xu, Q. Fang, W.T. Yu, W.B. Hou,
Y.H. Bing, S.Y. Sun, M.H. Jiang, Appl. Phys. Lett. 70 (1997)
544.
[5] D. Xu, W.T. Yu, X.Q. Wang, D.R. Yuan, M.K. Lu, P. Yang, S.Y.
Guo, F.Q. Meng, M.H. Jiang, Acta Cryst. C 55 (1999) 1203.
[6] Y.X. Yan, Q. Fang, D.R. Yuan, Y.P. Tian, Z. Liu, X.M. Wang, M.H.
Jiang, D. Williams, A. Siu, Z.G. Cai, Chin. Chem. Lett. 10 (1999)
257.
[7] X.Q. Wang, D. Xu, M.K. Lu, D.R. Yuan, G.H. Zhang, F.Q. Meng,
S.Y. Guo, M. Zhou, J.R. Liu, X.R. Li, Cryst. Res. Technol. 36 (2001)
73.
[8] Y.X. Yan, Q. Fang, W.T. Yu, Y.P. Tian, D.R. Yuan, X.Q. Wang,
F.Q. Meng, Z.G. Cai, L.Z. Zhang, Chin. Chem. Lett. 9 (1998)
1125.
[9] D. Louer, M. Louer, J. Appl. Cryst. 5 (1972) 271.
[10] A. Boultif, D. Louer, J. Appl. Cryst. 24 (1991) 987.
[11] P.O. Kinell, B. Strandberc, Acta Chem. Scand. 13 (1959) 1607.
[12] C. Balarew, R.J. Duhlew, Solid State Chem. 55 (1984) 1.
[13] K. Nakamoto, translated by D.R. Huang, R.Q. Wang, Infrared and
Raman Spectra of Inorganic and Coordination Compounds, 4th ed.,
Chemical Industry Press, Beijing, 1991, p. 304 (in Chinese).
[14] J. Lewis, R.S. Nyholm, P.W. Smith, J. Chem. Soc. 83 (1960) 1992.
[15] A. Sabatini, I. Bertini, Inorg. Chem. 4 (1965) 959.
[16] A. Muller, K.H. Schmidt, K.H. Tytko, J. Bouwma, F. Jellinek, Spec-
trochim. Acta 28A (1972) 381.
[17] G.J. Kubas, L.H. Jones, Inorg. Chem. 13 (1974) 2816.
[18] J. Madarasz, P. Bornbicz, M. Okuya, S. Kaneko, Solid State Ionics
141–142 (2001) 439.