Angewandte Chemie International Edition
10.1002/anie.201800218
COMMUNICATION
most reported OPMs (Table S2). The
microporosity of the 3D-CON was
further confirmed by measuring the
argon (Ar) gas adsorption isotherm.
Moreover, measuring Ar adsorption at
87 K has some advantages for
micropore analysis, because Ar does
not have a quadrupole interaction.
Figure 4e shows the Ar isotherm
measured for 3D-CON, which exhibits
a rapid Ar uptake at a very low relative
pressure, indicating the typical
behavior of permanent microporosity,
followed by
increase in Ar uptake (P/P
.9). The steep uptake at very low
a
very small gradual
o
= 0.05
̶
0
pressure is due to enhanced
interactions in the narrow micropores,
a typical type I isotherm, resulting in
micropore filling at very low pressure.
The pore size distributions were
estimated by using NLDFT from the
adsorption of the Ar isotherm (inset,
Figure 4e), showing that the 3D-CON
has only one major peak centered at
Figure 4. Gas storage properties of 3D-CON and literature comparison. (a) Hydrogen adsorption-
desorption isotherm at 77 K. Inset: isosteric heat of adsorption (Qst) as a function of gas loading calculated
from low pressure isotherms at 77 and 87 K. (b) Methane adsorption-desorption isotherm at 273 K. Inset: Qst
as a function of gas storage obtained from low pressure isotherms at 77 and 87 K. (c) Carbon dioxide
2
.82 Å. This ultrahigh microporosity adsorption-desorption isotherms at 273 K. Inset: Qst for the CO
2
as a function of gas uptake estimated from
low pressure isotherms at 273 and 298 K. (d) High pressure gas (H , CH and CO ) uptakes. (e) Argon
could be the reason of its exceptional
H
should be associated with the robust
fused-aromatic ring-based 3D-CON
structure, suggesting a promising potential for clean energy and
environmental applications.
2
4
2
adsorption-desorption isotherm measured at 87 K. Inset: pore size distribution calculated from NLDFT. (f)
Comparison of hydrogen uptakes for organic porous materials (OPMs) at 1 bar and 77 K (data taken from
Table S2).
2
uptake at low pressure, which
[
[
4]
5]
R. Dell, D. Rand, 2004.
a) R. Dawson, A. I. Cooper, D. J. Adams, Prog. Polym. Sci. 2012, 37,
530-563; b) T. Ben, C. Pei, D. Zhang, J. Xu, F. Deng, X. Jing, S. Qiu,
In summary, we have presented the design and synthesis of shape
persistent cage-like organic network structure using a rigid shape
persistent building block derived from triptycene hexamine. This
robust structure is thermally stable, ultramicroporous and display
outstanding gas adsorption property. The cage-like organic network
structure exhibits a BET surface area up to 2247 m g and high gas
adsorption capacity. Owing to the small pore size distribution and
aromatic fused ring system, the cage-like network structure exhibits
Energy Environ. Sci. 2011, 4, 3991-3999; c) Q. Liu, Z. Tang, M. Wu, Z.
Zhou, Polym. Int. 2014, 63, 381-392.
a) B. Li, H.-M. Wen, Y. Cui, W. Zhou, G. Qian, B. Chen, Adv. Mater. 2016,
[6]
[7]
28, 8819-8860; b) H. Furukawa, K. E. Cordova, M. O’Keeffe, O. M. Yaghi,
Science 2013, 341.
A. I. Cooper, M. J. Rosseinsky, Nat. Chem. 2009, 1, 26-27.
A. U. Czaja, N. Trukhan, U. Muller, Chem. Soc. Rev. 2009, 38, 1284-
2
-1
[
8]
1293.
[
9]
a) M. E. Davis, Nature 2002, 417, 813-821; b) T. Ben, S. Qiu,
CrystEngComm 2013, 15, 17-26.
excellent H
2
uptake of up to 2.64 wt % at 77K and 1.0 bar. Uptake for
is 2.4 wt % at 273 K and 1.0 bar. This
CO is 26.7 wt % and CH
2
4
[10] a) Q. Chen, M. Luo, P. Hammershøj, D. Zhou, Y. Han, B. W. Laursen,
C.-G. Yan, B.-H. Han, J. Am. Chem. Soc. 2012, 134, 6084-6087; b) D.
Yuan, W. Lu, D. Zhao, H.-C. Zhou, Adv. Mater. 2011, 23, 3723-3725; c)
M. G. Rabbani, H. M. El-Kaderi, Chem. Mater. 2012, 24, 1511-1517; d)
W. Lu, D. Yuan, J. Sculley, D. Zhao, R. Krishna, H.-C. Zhou, J. Am. Chem.
Soc. 2011, 133, 18126-18129.
strategy of exploiting the effective condensation reaction to synthesize
organic frameworks with high uptake capacity and high
physiochemical stabilities hold huge promise for practical applications.
CON demonstrates huge advance in the preparation of cage-like
porous aromatic frameworks for high gas storage capacity.
Acknowledgements
This work was supported by the Creative Research Initiative (CRI),
the BK21 Plus, Science Research Center (SRC) and Climate Change
programs through the National Research Foundation (NRF) of Korea
and by UNIST.
[
11] Y. Zhang, S. N. Riduan, Chem. Soc. Rev. 2012, 41, 2083-2094.
[12] J. Mahmood, E. K. Lee, M. Jung, D. Shin, I.-Y. Jeon, S.-M. Jung, H.-J.
Choi, J.-M. Seo, S.-Y. Bae, S.-D. Sohn, N. Park, J. H. Oh, H.-J. Shin, J.-
B. Baek, Nat. Commun. 2015, 6.
13] M. G. Rabbani, T. E. Reich, R. M. Kassab, K. T. Jackson, H. M. El-Kaderi,
Chem. Commun. 2012, 48, 1141-1143.
14] a) C. Zhang, P.-C. Zhu, L. Tan, J.-M. Liu, B. Tan, X.-L. Yang, H.-B. Xu,
Macromolecules 2015, 48, 8509-8514; b) S. Mondal, N. Das, J. Mater.
Chem. A 2015, 3, 23577-23586; c) J. H. Chong, M. J. MacLachlan, Chem.
Soc. Rev. 2009, 38, 3301-3315.
[
[
Keywords: 3D cage-like network, gas uptake, hydrogen, carbon
dioxide, methane.
[
15] J. Rouquerol, D. Avnir, C. W. Fairbridge, D. H. Everett, J. M. Haynes, N.
Pernicone, J. D. F. Ramsay, K. S. W. Sing, K. K. Unger, in Pure Appl.
Chem., 66, 1994, 1739-1758.
16] P. Arab, M. G. Rabbani, A. K. Sekizkardes, T. İslamoğlu, H. M. El-Kaderi,
Chem. Mater. 2014, 26, 1385-1392.
17] K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z.
R. Herm, T.-H. Bae, J. R. Long, Chem. Rev. 2012, 112, 724-781.
18] L.-H. Xie, M. P. Suh, Chem. Eur. J. 2013, 19, 11590-11597.
19] S. K. Bhatia, A. L. Myers, Langmuir 2006, 22, 1688-1700.
20] a) Z. Wang, B. Zhang, H. Yu, L. Sun, C. Jiao, W. Liu, Chem. Commun.
[
1]
a) G. Ferey, C. Serre, T. Devic, G. Maurin, H. Jobic, P. L. Llewellyn, G.
De Weireld, A. Vimont, M. Daturi, J.-S. Chang, Chem. Soc. Rev. 2011,
40, 550-562; b) J. Germain, J. M. J. Fréchet, F. Svec, Small 2009, 5,
[
[
1098-1111; c) P. A. Owusu, S. Asumadu-Sarkodie, S. Dubey, Cogent
Eng. 2016, 3, 1167990; d) C. E. McGlade, Energy 2012, 47, 262-270.
D. M. D'Alessandro, B. Smit, J. R. Long, Angew. Chem. Int. Ed. 2010, 49,
[
[
2]
3]
6058-6082.
[
[
[
a) W. Lu, D. Yuan, D. Zhao, C. I. Schilling, O. Plietzsch, T. Muller, S.
Bräse, J. Guenther, J. Blümel, R. Krishna, Z. Li, H.-C. Zhou, Chem. Mater.
2010, 22, 5964-5972; b) K. V. Kumar, K. Preuss, M.-M. Titirici, F.
2010, 46, 7730-7732; b) M. Gallo, D. Glossman-Mitnik, J. Phys. Chem.
Rodríguez-Reinoso, Chem. Rev. 2017, 117, 1796-1825.
C 2009, 113, 6634-6642.
This article is protected by copyright. All rights reserved.