S. V. KIRPICHENKO ET AL.
[26] H. Shanan-Atidi, K. H. Bar-Eli, J. Phys. Chem. 1970, 74, 961–963.
[27] R. L. Willer, E. L. Eliel, J. Am. Chem. Soc. 1977, 99, 1925–1936.
[28] K. B. Wiberg, J. D. Hammer, H. Castejon, W. F. Bailey, E. L. DeLeon, R. M.
Jarret, J. Org. Chem. 1999, 64, 2085–2095.
[29] F. A. Bovey, E. W. Anderson, F. P. Hood, R. L. Kornegay, J. Chem. Phys.
1964, 40, 3099–3109.
[30] In the literature, calculations of fluorocyclohexane give inconsistent
results varying from –0.6 to 0.3 depending on the method and the
basis set used;17,31–33 variation of the results for fluorocyclohexane
with the level of theory was specially mentioned.32 Still, since the
values obtained at good levels of theory are close to zero irrespective
of the sign, the position of the equilibrium in Scheme 2 and of similar
equilibria for the model compounds having only one of the two
heteroatoms, as said above, is expected to be governed by the A
value of the methyl group, that is, shifted toward the Me-equatorial
conformers.
[31] K. B. Wiberg, J. Org. Chem. 1999, 64, 6387–6393.
[32] A. J. Weldon, T. L. Vickrey, G. S. Tschumper, J. Phys. Chem. A 2005, 109,
11073–11079.
[33] W. S. Ohlinger, P. E. Klunzinger, B. J. Deppmeier, W. J. Hehre, J. Phys.
Chem. A 2009, 113, 2165–2175.
[34] C. H. Bushweller, in Conformational Behavior of Six-Membered Rings.
Analysis, Dynamics, and Stereoelectronic Effects, (Ed.: E. Juaristi,).
Wiley-VCH, New York, 1995, pp. 25–58.
[35] E. L. Eliel, R. J. L. Martin, J. Am. Chem. Soc. 1968, 90, 689–697.
[36] F. R. Jensen, C. H. Bushweller, B. H. Beck, J. Am. Chem. Soc. 1969, 91,
344–351.
Acknowledgements
The financial support of this work by the Russian Foundation for
Basic Research and Deutsche Forschungsgemeinschaft (Grant
RFBR-DFG No. 08-03-91954) is gratefully acknowledged. Record-
ing of the low-temperature spectra by Dr. Matthias Heydenreich
and Dipl.-Ing (FA) Angela Krtitschka (University of Potsdam) is
greatly acknowledged.
REFERENCES
[1] E. L. Eliel, Acc. Chem. Res. 1970, 3, 1–8.
[2] J. B. Lambert, Acc. Chem. Res. 1971, 4, 87–94.
[3] N. S. Zefirov, I. V. Kazimirchik, Russ. Chem. Rev. 1974, 43, 252–265.
[4] E. Juaristi, Acc. Chem. Res. 1989, 22, 357–364.
[5] E. Kleinpeter, in Conformational Behavior of Six-Membered Rings.
Analysis, Dynamics, and Stereoelectronic Effect (Ed.: E. Juaristi),
Wiley-VCH, New York, 1995, pp. 201–243.
[6] E. Kleinpeter, Advances in Heterocyclic Chemistry, Elsevier Academic
Press, Amsterdam, 2004, 86, pp. 41–127.
[7] G. Rousseau, L. Blanco, Tetrahedron 2006, 62, 7951–7993.
[8] I. Arnason, G. K. Thorarinsson, E. Matern, Z. Anorg. Allg. Chem. 2000,
626, 853–862.
[9] I. Arnason, A. Kvaran, S. Jonsdottir, P. I. Gudnason, H. Oberhammer,
J. Org. Chem. 2002, 67, 3827–3831.
´
´
[37] H.-J. Schneider, N. M. Hoppen, J. Org. Chem. 1978, 43, 3866–3873.
[38] R. Borsdorf, P. F. Matzen, H. Remane, A. Z. Zschunke, Z. Chem. 1971,
11, 21–22.
[39] S. V. Kirpichenko, A. I. Albanov, J. Organomet. Chem. 2010, 695,
663–666.
[10] L. B. Favero, B. Velino, W. Caminati, I. Arnason, A. Kvaran, Organo-
metallics 2006, 25, 3813–3816.
[11] L. B. Favero, B. Velino, W. Caminati, I. Arnason, A. Kvaran, J. Phys. Chem.
A 2006, 110, 9995–9999.
´
[12] A. Bodi, A. Kvaran, S. Jonsdottir, E. Antonsson, S. O. Wallevik, I.
´
¨
Arnason, A. V. Belyakov, A. A. Baskakov, M. Holbling, H. Oberhammer,
Organometallics 2007, 26, 6544–6550.
[40] H. Sakurai, T. Hirose, A. Hosomi, J. Organomet. Chem. 1975, 86,
197–203.
[41] R. Q. Wiedenhoefer, B. Krzyzanowska, Webb-Wood, Organometallics
1998, 17, 5124–5127.
[42] A. Bax, S. Subramanian, J. Magn. Reson. 1986, 67, 565–569.
[43] K. Pihlaja, E. Kleinpeter, ‘‘Carbon-13 NMR Chemical Shifts in Structural
and Stereochemical Analysis’’, Methods in Stereochemical Analysis, VCH,
New York, 1994.
[13] G. V. Girichev, N. I. Giricheva, A. Bodi, P. I. Gudnason, S. Jonsdottir, A.
Kvaran, I. Arnason, H. Oberhammer, Chem. Eur. J. 2007, 13,
1776–1783.
[14] S. O. Wallevik, R. Bjornsson, A. Kvaran, S. Jonsdottir, I. Arnason, A. V.
Belyakov, A. A. Baskakov, K. Hassler, H. Oberhammer, J. Phys. Chem. A
2010, 114, 2127–2135.
[15] C. H. Bushweller, J. W. O’Neil, H. S. Bilofsky, Tetrahedron 1971, 27,
3065–3068.
[16] A. J. Weldon, G. S. Tschumper, Int. J. Quant. Chem. 2007, 107,
´
[44] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.
Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant,
J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi,
G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara,
K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O.
Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C.
Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J.
Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma,
G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich,
A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K.
Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S.
Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I.
Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A.
Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen,
M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision B.03,
Gaussian, Inc., Pittsburgh PA, 2003.
2261–2265.
[17] R. Bjornsson, I. Arnason, Phys. Chem. Chem. Phys. 2009, 11,
8689–8697.
´
´
[18] S. O. Wallevik, R. Bjornsson, A. Kvaran, S. Jonsdottir, G. V. Girichev,
N. I. Giricheva, K. Hassler, I. Arnason, J. Mol. Struct. 2010, in press,
10.1016/j.molstruc.2010.02.059.
[19] A. Bodi, R. Bjornsson, I. I. Arnason, J. Mol. Struct. 2010, in press,
10.1016/j.molstruc.2009.12.002.
[20] F. Freeman, C. Cha, C. Fang, A. C. Huang, J. H. Hwang, P. L. Louie, B. A.
Shainyan, J. Phys. Org. Chem. 2005, 18, 35–48.
[21] S. V. Kirpichenko, E. Kleinpeter, B. A. Shainyan, J. Phys. Org. Chem.
2010, 48, in press, 10.1002/poc.1677.
[22] D. K. Dalling, D. M. Grant, J. Am. Chem. Soc. 1967, 89, 6612–6622.
[23] F. A. L. Anet, C. H. Bradley, G. W. Buchanan, J. Am. Chem. Soc. 1971, 93,
258–259.
[24] A. E. Aliev, K. D. M. Harris, J. Am. Chem. Soc. 1993, 115, 6369–6377.
[25] Due to the impurity signal exactly on the methyl 7eq signal (at 103 K),
this line appears less broad than the methyl 7ax signal at higher field;
however, following the line shape variations along the whole low
temperature measurements (cf. Figure 3) this equivocality proves
obvious.
[45] J. R. Ditchfield, Mol. Phys. 1974, 27, 789–807.
[46] J. R. Cheeseman, G. W. Trucks, T. A. Keith, M. J. Frisch, J. Chem. Phys.
1996, 104, 5497–5509.
[47] F. Weinhold, C. R. Landis, Valency and Bonding: A Natural Bond Orbital
Donor–Acceptor Perspective, Cambridge University Press, Cambridge,
2005.
[48] E. D. Glendening, A. E. Reed, J. E. Carpenter, F. Weinhold, NBO Version
3.1, Gaussian, Pittsburgh, PA, CT, 2003.
wileyonlinelibrary.com/journal/poc
Copyright ß 2010 John Wiley & Sons, Ltd.
J. Phys. Org. Chem. 2011, 24 320–326