G. V. Shanbhag et al. / Tetrahedron Letters 47 (2006) 141–143
143
7. (a) Uchimaru, Y. Chem. Commun. 1999, 1133–1134; (b)
Tokunaga, M.; Eckert, M.; Wakatsuki, Y. Angew. Chem.,
Int. Ed. 1999, 38, 3222–3225; (c) Tokunaga, M.; Ota, M.;
Haga, M.; Wakatsuki, Y. Tetrahedron Lett. 2001, 42,
3865–3868; (d) Klein, D. P.; Ellern, A.; Angelici, R. J.
Organometallics 2004, 23, 5662–5670.
8. (a) Hartung, C. G.; Tillack, A.; Trauthwein, H.; Beller, M.
J. Org. Chem. 2001, 66, 6339–6343; (b) Beller, M.; Breindl,
C.; Eichberger, M.; Hartung, C. G.; Seayad, J.; Thiel, O.
R.; Tillack, A.; Trauthwein, H. Synlett 2002, 10, 1579–
1594; (c) Field, L. D.; Messerle, B. A.; Vuong, K. Q.;
Turner, P. Organometallics 2005, 24, 4241–4250.
9. (a) Kadota, I.; Shibuya, A.; Lutete, L. M.; Yamamoto, Y.
J. Org. Chem. 1999, 64, 4570–4571; (b) Shimada, T.;
Yamamoto, Y. J. Am. Chem. Soc. 2002, 124, 12670–
12671.
around the NH2– group do not affect the reactivity of
the amine. The amines with electron-withdrawing sub-
stituents, Cl– and Br– were less reactive (entries 9 and
10), whereas amines with stronger electron-withdrawing
substituents, NO2 and CHO, did not undergo the hydro-
amination reaction at all (entries 11 and 12). This reac-
tion also took place smoothly with 1-naphthylamine
(entry 13).
In conclusion, we have demonstrated that an environ-
mentally friendly, inexpensive and reusable transition
metal ion exchanged montmorillonite K-10 can be used
efficiently for intermolecular hydroamination of termi-
nal alkynes with aromatic amines.
10. Mizushima, E.; Hayashi, T.; Tanaka, M. Org. Lett. 2003,
5, 3349–3352.
Acknowledgements
11. (a) Penzien, J.; Muller, T. E.; Lercher, J. A. Chem.
¨
Commun. 2000, 1753–1754; (b) Penzien, J.; Muller, T. E.;
¨
Lercher, J. A. Micropor. Mesopor. Mater. 2001, 48, 285–
291; (c) Penzien, J.; Haeßner, C.; Jentys, A.; Ko¨hler, K.;
G.V.S. acknowledges C.S.I.R. New Delhi, for the award
of a Senior Research Fellowship. T.J. thanks DST, New
Delhi, for a Young Scientist Fellowship.
Muller, T. E.; Lercher, J. A. J. Catal. 2004, 221, 302–312;
¨
(d) Penzien, J.; Abraham, A.; Bokhoven, J. A.; Jentys, A.;
Muller, T. E.; Sievers, C.; Lercher, J. A. J. Phys. Chem. B
¨
2004, 108, 4116–4126.
References and notes
12. Richmond, M. K.; Scott, S. L.; Alper, H. J. Am. Chem.
Soc. 2001, 123, 10521–10525.
13. Varma, R. S. Tetrahedron 2002, 58, 1235–1255.
14. (a) Shanbhag, G. V.; Halligudi, S. B. J. Mol. Catal. A:
Chem. 2004, 222, 223–228; (b) Joseph, T.; Shanbhag, G.
V.; Halligudi, S. B. J. Mol. Catal. A: Chem. 2005, 236,
139–144.
1. (a) Muller, T. E.; Beller, M. Chem. Rev. 1998, 98, 675–703;
¨
(b) Pohlki, F.; Doye, S. Chem. Soc. Rev. 2003, 32, 104–
114; (c) Brunet, J. J.; Neibecker, D. In Catalytic Hetero-
functionalization; Togni, A., Grutzmacher, H., Eds.; VCH:
¨
Weinheim, 2001; pp 91–141.
15. Typical procedure for catalyst preparation: Montmoril-
lonite K-10 (Aldrich) (10 g) was stirred in an aqueous
solution of Cu(CH3CO2)2 (0.05 mol dmÀ3) at 80 °C for
12 h. The clay was separated by filtration and washed
repeatedly with distilled water. To ensure complete ion
exchange, the procedure was repeated followed by drying
at 120 °C and calcination at 250 °C. The Cu2+ content in
the clay was found to be 0.4 mmol/g (AAS).
2. (a) Tsukinoki, T.; Mitoma, Y.; Nagashima, S.; Kawaji, T.;
Hashimoto, I.; Tashiro, M. Tetrahedron. Lett. 1998, 39,
8873–8876; (b) Kobayashi, S.; Ishitani, H. Chem. Rev.
1999, 99, 1069–1094; (c) Shibata, I.; Kawakami, T. M.;
Tanizawa, D.; Suwa, T.; Sugiyama, E.; Matsuda, H.;
Baba, A. J. Org. Chem. 1998, 63, 383–385; (d) Sandhu, J.
S.; Sain, B. Heterocycles 1987, 26, 777–818; (e) Cobas, A.;
Guitian, E.; Castedo, L. J. Org. Chem. 1993, 58, 3113–
3117; (f) Okamoto, H.; Kato, S. Bull. Chem. Soc. Jpn.
1991, 64, 2128–2130; (g) Nongkunsarn, P.; Ramsden, C.
A. Tetrahedron 1997, 53, 3805–3830; (h) Fustero, S.; de la
Torre, M. G.; Jofre, V.; Carlon, R. P.; Navarro, A.;
Fuentes, A. S. J. Org. Chem. 1998, 63, 8825–8836; (i)
Guijarro, D.; Yus, M. Tetrahedron 1993, 49, 7761–7768.
3. (a) Barluenga, J.; Aznar, F. Synthesis 1975, 704–705; (b)
Barluenga, J.; Aznar, F. Synthesis 1977, 195–196; (c)
Barluenga, J.; Aznar, F.; Liz, R.; Rodes, R. J. Chem. Soc.,
Perkin Trans. 1 1980, 2732–2737.
4. (a) Tzalis, D.; Koradin, C.; Knochel, P. Tetrahedron Lett.
1999, 40, 6193–6195; (b) Walsh, P. J.; Baranger, A. M.;
Bergman, R. G. J. Am. Chem. Soc. 1992, 114, 1708–1719.
5. (a) Li, Y.; Marks, T. J. Organometallics 1996, 15, 3770–
3772; (b) Haskel, A.; Straub, T.; Eisen, M. S. Organomet-
allics 1996, 15, 3773–3775; (c) Eisen, M. S.; Straub, T.;
Haskel, A. J. Alloys Compd. 1998, 116–122; (d) Straub, T.;
Haskel, A.; Neyroud, T. G.; Kapon, M.; Botoshansky,
M.; Eisen, M. S. Organometallics 2001, 20, 5017–5035.
6. (a) Bytschkov, I.; Doye, S. Eur. J. Org. Chem. 2003, 935–
946; (b) Doye, S. Synlett 2004, 1653–1672; (c) Heutling,
A.; Pohlki, F.; Bytschkov, I.; Doye, S. Angew. Chem., Int.
Ed. 2005, 44, 2–4.
16. Typical procedure for the M2+-K-10 catalyzed hydro-
amination reaction: Synthesis of N-(1-phenylethylidene)-
2,4,6-trimethylaniline (entry 5, Table 3): phenylacetylene
(5.37 mmol, 0.55 g) and 2,4,6-trimethylaniline (10.73
mmol, 1.45 g) were added to a stirred mixture of Cu-K-
10 (0.2 g) in toluene (4 mL). The reaction mixture was
stirred at 110 °C for 20 h under a N2 atmosphere in an oil
bath. The mixture was then cooled and filtered to remove
the catalyst and the solvent was removed by distillation.
The mixture was dried in vacuo and purified by column
chromatography on neutral alumina as the stationary
phase (petroleum ether/ethyl acetate, 200/1). Yield: 91%,
light brown oil: 1H NMR (CDCl3, 200 MHz): d = 7.86–
8.01 (m, 2H), 7.31–7.48 (m, 3H), 6.80 (s, 2H), 2.21 (s, 3H),
1.99 (s, 3H), 1.92 (s, 6H). 13C NMR (CDCl3): d = 165.57
(C), 146.50 (C), 139.33 (C), 131.96 (C), 130.43 (CH),
128.56 (CH), 128.43 (CH), 127.12 (CH), 125.63 (C), 20.81
(CH3), 17.96 (CH3), 17.48 (CH3). FT IR (neat, cmÀ1):
3025, 2940, 1638, 1207, 1025, 856, 762, 629. GCMS m/z
(relative intensity): 237 (64) [M+], 222 (100), 207 (47), 103
(52), 91 (55), 77 (40).
17. The reactions involving aliphatic alkynes were carried out
in a Parr autoclave under N2.