J . Org. Chem. 2001, 66, 597-604
597
P h otooxid a tive Da m a ge of Gu a n in e in DG a n d DNA by th e
Ra d ica ls Der ived fr om th e r Clea va ge of th e Electr on ica lly
Excited Ca r bon yl P r od u cts Gen er a ted in th e Th er m olysis of
Alk oxym eth yl-Su bstitu ted Dioxeta n es a n d th e P h otolysis of
Alk oxya ceton es
Waldemar Adam,* Markus A. Arnold, and Chantu R. Saha-Mo¨ller
Institut fu¨r Organische Chemie, Universita¨t Wu¨rzburg, Am Hubland, D-97074 Wu¨rzburg, Germany
adam@chemie.uni-wuerzburg.de
Received September 15, 2000
On thermolysis of the methoxy (MeO-TMD), tert-butoxy (tBu O-TMD), and hydroxy (HO-TMD)
derivatives of 3,3,4,4-tetramethyl-1,2-dioxetane (TMD) in the presence of d G and calf-thymus DNA,
the guanine is oxidized considerably more efficiently than the parent TMD. The same trend in the
oxidative reactivity is observed for the photolysis of the corresponding oxy-substituted ketones versus
acetone. The oxidative reactivity order in the dioxetane thermolysis, as well as in the ketone
photolysis, parallels the ability of the excited ketones to release radicals (determined by spin trapping
with DMP O and EPR spectroscopy) upon R cleavage (Norrish-type-I reaction). In the presence of
molecular oxygen, the carbon-centered radicals are scavenged to produce peroxyl radicals, which
are proposed as the reactive species in the oxidation of the guanine in d G and calf-thymus DNA.
In tr od u ction
age DNA in cell-free as well as in cellular systems has
been demonstrated.7,8
In oxidative stress, reactive oxygen species such as oxyl
radicals (hydroxyl, alkoxyl, and peroxyl), superoxide
radical anion, singlet oxygen, hydrogen peroxide or alkyl
peroxides are responsible for the damage of cellular
constituents through oxidation.1 The consequences of the
oxidative damage in the case of DNA may be mutagenesis
and carcinogenesis.2 As for the origin of these oxidants,
they are formed during oxygen metabolism3 or by expo-
sure to UV radiation (sunlight). The latter involves
electronically excited states, which may be generated by
excitation of endogenous sensitizers, but also by lipid
peroxidation (Russell mechanism).4
In our group, the oxidative damage of d G and DNA in
the thermolysis of 3-(hydroxymethyl)-3,4,4-trimethyl-1,2-
dioxetane (HO-TMD) has been studied intensively since
it is significantly more effective than the merely alkyl-
substituted TMD.9 The products detected in the oxidation
of calf-thymus DNA have been 7,8-dihydro-8-oxoguanine
(8-oxoGu a ) and guanidine-releasing products (GRP ),
e.g. oxazolone. The oxidative damage was attributed to
(5) (a) Kochevar, I. E.; Dunn, D. A. In Bioorganic Photochemistry;
Morrison, H., Ed.; J ohn Wiley & Sons: New York, 1990; Chapter 4,
pp 273-316. (b) Rahn, R. O. In DNA repair, a laboratory manual of
research procedures; Friedberg, E. C., Hanawalt, P. R., Eds.; Marcel
Dekker: New York, 1983; pp 75-85. (c) Lamola, A. A.; Yamane, Y.
Proc. Natl. Acad. Sci. U.S.A. 1967, 58, 443-446. (d) Epe, B.; Henzl,
H.; Adam, W.; Saha-Mo¨ller, C. R. Nucleic Acid Res. 1992, 21, 863-
869. (e) Zierenberg, B. E.; Kramer, D. M.; Geisert, M. G.; Kirste, R. G.
Photochem. Photobiol. 1971, 14, 515-520. (f) Charlier, M.; He´le`ne, C.
Photochem. Photobiol. 1972, 15, 527-536. (g) Hildenbrand, K.; Schulte-
Frohlinde, D. Int. J . Radiat. Biol. 1997, 71, 377-385. (h) Umlas, M.
E.; Franklin, W. A.; Chan, G. L.; Haseltine, W. A. Photochem. Photobiol.
1985, 42, 265-273. (i) Song, Q. H.; Yao, S. D.; Lin, N. Y. J . Photochem.
Photobiol. B: Biol. 1997, 40, 199-203. (j) Mennigmann, H.-D.; Wacker,
A. Photochem. Photobiol. 1970, 11, 2911-2916.
The induction of DNA damage by electronically excited
compounds directly (e.g., triplet ketones) is well estab-
lished.5 Since 1,2-dioxetanes produce electronically ex-
cited ketones upon thermolysis, they are ideally suited
to assess their excited-state reactivity without the need
of exposing the biological target directly to UV irradia-
tion. Another advantage is the selective generation of
triplet-excited ketones on thermal decomposition of di-
oxetanes.6 The propensity of various dioxetanes to dam-
(6) (a) Murphy, S.; Adam, W. J . Am. Chem. Soc. 1996, 118, 12916-
12921. (b) Turro, N. J .; Lechtken, P. J . Am. Chem. Soc. 1972, 94, 2886-
2888.
(7) Lamola, A. A.; Biophys. Res. Commun. 1971, 43, 898-899.
(8) (a) Adam, W.; Beinhauer, A.; Mosandl, T.; Saha-Mo¨ller, C. R.;
Vargas, F.; Epe, B.; Mu¨ller, E.; Schiffmann, D.; Wild, D. Environ.
Health Perspect. 1990, 88, 89-97. (b) Epe, B.; Mu¨ller, E.; Adam, W.;
Saha-Mo¨ller, C. R. Chem.-Biol. Int. 1992, 85, 265-281. (c) Emmert,
S.; Epe, B.; Saha-Mo¨ller, C. R.; Adam, W.; Ru¨nger, M. Photochem.
Photobiol. 1995, 61, 136-141. (d) Adam, W.; Epe, B.; Schiffmann, D.;
Vargas, F.; Wild, D. Angew. Chem., Int. Ed. Engl. 1988, 27, 429-
431.
(9) (a) Adam, W.; Andler, S.; Nau, W.; Saha-Mo¨ller, C. R. J . Am.
Chem. Soc. 1998, 120, 3549-3559. (b) Adam, W.; Saha-Mo¨ller, C. R.;
Scho¨nberger, A. J . Am. Chem. Soc. 1996, 118, 9233-9238. (c) Adam,
W.; Saha-Mo¨ller, C. R.; Scho¨nberger, A. J . Am. Chem. Soc. 1997, 119,
719-723. (d) Adam, W.; Saha-Mo¨ller, C. R.; Scho¨nberger, A.; Berger,
M.; Cadet, J . Photochem. Photobiol. 1995, 62, 231-238.
* To whom correspondence should be addressed. Fax: +49 931
(1) Sies, H. In Oxidative Stress; Sies, H., Ed.; Academic Press:
London, 1985; Chapter 1, pp 1-10.
(2) (a) Ames, B. N. Science 1983, 221, 1256-1264. (b) Besaga, H. S.
Biochem. Cell. Biol. 1989, 68, 989-998. (c) Meneghini, R. Mutat. Res.
1988, 195, 215-230. (d) Cadenas, E. Annu. Rev. Biochem. 1989, 58,
79-110.
(3) (a) Halliwell, B. Mutat. Res. 1999, 443, 37-52. (b) Wang, D.;
Kreutzer, D. A.; Essigmann, J . M. Mutat. Res. 1998, 400, 99-115. (c)
Stogner, S. W.; Payne, D. K. Ann. Pharmacother. 1992, 26, 1554-1562.
(d) Marnett, L. J . Carcinogenesis 2000, 21, 361-370.
(4) Liu, Y.; Stolze, K.; Dadak, A.; Nohl, H. Photochem. Photobiol.
1997, 66, 443-449.
10.1021/jo0056491 CCC: $20.00 © 2001 American Chemical Society
Published on Web 12/23/2000