7
330 J ang and Aida
Macromolecules, Vol. 37, No. 19, 2004
2
. To a THF solution of a mixture of 1 (4 µmol) and NaH
assembly structure of dendritic macrocycle also have
tubular internal space. A novel ultrahigh molecular
weight supramolecular polymeric assembly which is
composed of macrocyclic units was designed, and its
solubility was controlled by introducing of a dendritic
architecture.
(
12 µmol) was added MeI (12 µmol) and vigorously stirred
under Ar at 25 °C for 12 h. Insoluble fractions were filtered
off from the reaction mixture, and filtrate was evaporated to
dryness. Then, the resulting mixture was subjected to re-
cyclable preparative GPC, where the first fraction was collected
and freeze-dried from benzene to give 2 as a white solid in
quantitative yield. MALDI-TOF-MS for C294
H
306
N
6
O
66 m/z:
calcd: 5002 [M + Na ]; found: 5002. H NMR (CDCl ): δ
.62-2.32 (m, 18H, H in cyclohexyl) 2.89 (s, 18H; N-Me), 3.74
+
1
Refer en ces a n d Notes
3
1
(
1) Sherrington, D. C.; Taskinen, K. A. Chem. Soc. Rev. 2001,
0, 83 and references therein.
(
-
8
s, 90H, -OMe), 4.46-4.50 (m, 12H, CH
2
-N), 4.93 (d, 60H;
), 7.36-7.46 (m,
3
CH
2
-), 6.36-6.64 (m, 90H; o, p-H in C
).
. A DMF solution of a mixture of 14 (0.03 mmol) and 4,4′-
6
H
3
(
2) Brunsveld, L.; Folmer, B. J . B.; Meijer, E. W.; Sijbesma, R.
6 4
H; C H
P. Chem. Rev. 2001, 101, 4071 and references therein.
3
(3) Hanabusa, K.; Kawakami, A.; Kimura, M.; Shirai, H. Chem.
biphenyldiaminomethyl (0.03 mmol) was vigorously stirred
under Ar at 60 °C for 72 h. The reaction mixture was treated
in a manner similar to that for the preparation of 11 to give 1
Lett. 1997, 191.
(4) (a) Yasuda, Y.; Iishi, E.; Inada, H.; Shirai, Y. Chem. Lett.
1996, 575. (b) Hanabusa, K.; Koto, C.; Kimura, M.; Shirai,
H.; Kakehi, A. Chem. Lett. 1997, 429. (c) Lightfoot, M. P.;
Mair, F. S.; Pritchard, R. G.; Warren, J . E. Chem. Commun.
as a white solid in 55% yield. MALDI-TOF-MS for C288
282
H -
+
1
N
6
O
66 m/z: calcd: 4906 [M + Na ]; found: 4908. H NMR
CDCl ): 3.70 (s, 90H, -OMe), 4.42 (m, 12H, CH -N), 4.87
d, 60H; -CH -), 6.32-6.59 (m, 90H; o, p-H in C of
), 8.00 and 8.31 (m,
1
999, 1945.
(
(
3
2
(
5) (a) Frechet, J . M. J . Science 1994, 263, 1710. (b) Tomalia, D.
A. Adv. Mater. 1994, 6, 529. (c) Fischer, M.; V o¨ gtle, F. Angew.
Chem., Int. Ed. 1999, 38, 884. (d) Tomalia, D. A.; Esfand, R.
Chem. Ind. 1997, 11, 416.
(6) (a) Newkome, G. M.; Guther, R.; Moorefield, C. N.; Cardullo,
F.; Echegoyen, L.; Perezcordero, E.; Luftmann, H. Angew.
Chem., Int. Ed. Engl. 1995, 34, 2023. (b) Zimmerman, S. C.;
Zeng, F.-W.; Reichert, D. E. C.; Kolotuchin, S. V. Science
2
6 3
H
dendritic wedge), 7.17-7.30 (m, 8H; C
H, C in core).
Mea su r em en t: In str u m en ts. H NMR spectra were mea-
sured in CDCl or DMSO-d at 21 °C on a J EOL GSX-270
spectrometer operating at 270 MHz, where the chemical shifts
were determined with respect to CHCl (δ 7.28 ppm) and CH
SOCD H (δ 7.28 ppm). Matrix-assisted laser desorption ioniza-
6 4
H
6
6 3
H
1
3
6
3
3
-
1
996, 271, 1095. (c) Lorenz, K.; Holter, D.; Stuhn, B.;
2
M u¨ lhaupt, R.; Frey, H. A. Adv. Mater. 1996, 8, 414. (d)
Issberner, J .; V o¨ gtle, F.; Cola, L. D.; Balzani, V. Chem.sEur.
J . 1997, 3, 706. (e) Hudson, S. D.; J ung, H.-T.; Percec, V.;
Cho, W.-D.; J ohansson, G.; Ungar, G.; Balagurusamy, V. S.
K. Science 1997, 278, 449. (f) Su a´ rez, M.; Lehn, J . M.;
Zimmerman, S. C.; Skoulios, A.; Heinrich, B. J . Am. Chem.
Soc. 1998, 120, 9526. (g) Enomoto, M.; Aida, T. J . Am. Chem.
Soc. 1999, 121, 874. (h) Kawa, M.; Fr e´ chet, J . M. J . Chem.
Mater. 1998, 10, 286. (i) Percec, V.; Ahn, C.-H.; Ungar, G.;
Yeardley, D. J . P.; M o¨ ller, M.; Sheiko, S. Nature (London)
tion time-of-flight mass spectrometry (MALDI-TOF-MS) was
performed on a Bruker model Protein TOF mass spectrometer
using 9-nitroanthracene (9NA) or indole acetic acid (IAA) as
a matrix. FT-IR spectra were recorded on a J ASCO model FT/
IR 610. Dynamic light scattering (DLS) measurements were
carried out using by an Otsuka model DLS-700 instrument at
2
5 °C.
GP C Mea su r em en ts. Analytical GPC was carried out on
a TOSOH model HLC-8020 equipped with TSKgel GMHXL
column as eluent of CHCl at 25 °C. Recyclable preparative
GPC was carried out on a J AI model LC-908 equipped with
J AIGEL 2H and J AIGEL 3H column as eluent of CHCl at 25
C.
Atom ic F or ce Micr oscop y (AF M). AFM was carried out
on a J EOL model J SPM 4200. One drop of dilute solution of 1
0.2 mM) in CHCl was placed on a freshly cleaved mica
1
998, 391, 161. (j) Yamaguchi, N.; Hamilton, L. M.; Gibson,
3
H. W. Angew. Chem., Int. Ed. 1998, 37, 3275. (k) Schenning,
A. P. H. J .; Elissen-Rom a´ n, C.; Weener, J .-W.; Baars, M. W.
P. L.; van der Gaast, S. J .; Meijer, E. W. J . Am. Chem. Soc.
1998, 120, 8199. (l) Tomioka, N.; Takasu, D.; Takahashi, T.;
Aida, T. Angew. Chem., Int. Ed. 1998, 37, 1531. (m) J ang,
W.-D.; J iang, D.-L.; Aida, T. J . Am. Chem. Soc. 2000, 122,
3
°
3
8
232. (n) J ang, W.-D.; Aida, T. Macromolecules 2003, 36,
461.
(
3
surface and spin-cast for AFM observation.
(
7) Sato, T.; J iang, D.-L.; Aida, T. J . Am. Chem. Soc. 1999, 121,
1
0658.
Con clu sion
(
8) (a) Yamaguchi, T.; Ishii, N.; Tashiro, K.; Aida, T. J . Am.
Chem. Soc. 2003, 125, 3934. (b) Liu, D.; De Feyter, S.; Cotlet,
M.; Wiesler, U.-M.; Weil, T.; Herrmann, A.; Mullen, K.; De
Schryver, F. C. Macromolecules 2003, 36, 8489. (c) Zubarev,
E. R.; Pralle, M. U.; Sone, E. D.; Stupp, S. I. J . Am. Chem.
Soc. 2001, 123, 4105.
In our demonstration of the self-assembly of dendritic
macrocycle, spectroscopic studies revealed that the
hydrogen bonding among core amide groups is the
driving force for the supramolecular assembly. Ultra-
high molecular weight assembly formation of the mac-
rocyclic dendrimer 1 was observed by GPC and DLS
analysis, whereas 3 cannot form a high molecular
weight supramolecular assembly, presumably because
of the twist arrangement of hydrogen bonds between
core 1,3,5-benzenetricarboxamide units. The linear stack-
(9) Hawker, C. J .; Fr e´ chet, J . M. J . J . Am. Chem. Soc. 1990, 112,
7
638.
(
(
10) Mitsunobu, O. Synthesis 1981, 1, 1.
11) Bellamy, L. J . The Infrared Spectra of Complex Molecules,
3
rd ed.; Chapman and Hall: New York.
(
12) (a) Shimizu, L. S.; Smith, M. D.; Hughes, A. D.; Shimizu, K.
D. Chem. Commun. 2001, 1592. (b) Bong, D. T.; Clark, T. D.;
Granja, J . R.; Ghadiri, M. R. Angew. Chem., Int. Ed. 2001,
1
2
ing of macrocycle may provide a tubular structure.
1
4
0, 988. (c) Gong, B. Chem.sEur. J . 2001, 7, 4337.
exhibited a fibrous supramolecular assembly structure
by AFM. It is possible that the fibrous supramolecular
MA0492364