J. Wen et al. / Inorganic Chemistry Communications 21 (2012) 16–20
19
In summary, we have developed a pyridine containing Mn2+
tetraazamacrocycle complex 2, and have demonstrated that two
types of hydrogen bonding and the intermolecular π–π stacking
of the pyridine rings belonged to each mononuclear unit were ca-
pable of mediating weak magnetic coupling between Mn2+ ions
at the supramolecular level. Particularly, the self-assembly of 2 dis-
sociated in the aqueous solution, which showed moderate binding
strength with CT-DNA by most probably partial intercalation
owing to the π–π interaction of pyridine with DNA base pairs.
Work is still underway in our lab to develop various pyridine con-
taining ligands and corresponding complexes.
(d) J.P. Costes, F. Dahan, B. Donnadieu, M.J. Rodriguez Douton, M.I. Fernandez
Garcia, A. Bousseksou, J.P. Tuchagues, Synthesis, structures and magnetic
properties of novel mononuclear, tetranuclear and 1D chain MnIII complexes
involving three related unsymmetrical trianionic ligands, Inorg. Chem. 43
(2004) 2736–2744;
(e) L.L. Li, K.J. Lin, C.J. Ho, C.P. Sun, H.D. Yang, A coordination π–π framework ex-
hibits spontaneous magnetization, Chem. Commun. (2006) 1286–1288;
(f) J. Wang, B. Slater, A. Alberola, H. Stoeckli-Evans, F.S. Razavi, M. Pilkington, The
rational design of a covalently tethered dinuclear [MnII(N3O2)]2 macrocyclic
building block: synthesis, structure and magnetic properties, Inorg. Chem.
46 (2007) 4763–4765;
(g) C. Hou, J.M. Shi, Y.M. Sun, W. Shi, P. Cheng, L.D. Liu, The magnetic study of a
binuclear Cu(II) complex with π–π stacking interactions, Dalton Trans.
(2008) 5970–5976;
(h) Y.H. Chi, L. Yu, J.M. Shi, Y.Q. Zhang, T.Q. Hu, G.Q. Zhang, W. Shi, P. Cheng, π–π
stacking and ferromagnetic coupling mechanism on a binuclear Cu(II) com-
plex, Dalton Trans. 40 (2011) 1453–1462.
Acknowledgments
[7] P.J. Barnard, R.S. Vagg, A spectroscopic investigation of the self-association and
DNA binding properties of a series of ternary ruthenium (II) complexes, J. Inorg.
Biochem. 99 (2005) 1009–1017.
[8] (a) H. Koyama, T. Yoshino, Syntheses of some medium sized cyclic triamines
and their cobalt(III) complexes, Bull. Chem. Soc. Jpn. 45 (1972) 481–484.
(b) X.M. Zhang, Asymmetric synthesis catalyzed by transition metal complexes
with new chiral ligands, WO Pat., 97/13763, 1997.(c) G.E. Kiefer, J. Simon, J.R.
Garlich, Bicyclopolyazamacrocyclophosphonic acids, their complexes and con-
jugates, for use as contrast agents, and processes for their preparation, WO
Pat., 94/26754, 1994.
We thank the National Natural Science Foundation of China
(21021062, 21027013, 21075064 and 90813020) and the National
Basic Research Program of China (2007CB925102) for the financial
support.
Appendix A. Supplementary data
[9] Preparation and crystal growth of 2 is as follows. Ligand 1 (0.232 g, 0.50 mmol)
was dissolved in EtOH (10 mL). Accompanied by vigorous stirring, Mn(ClO4)2
(0.127 g, 0.50 mmol) was added to the above solution. The mixture was gently
refluxed for 1 h and then cooled to room temperature, after which the solvent
was partially removed to approximately 5 mL and the resulting solid was isolated
by filtration, and air-dried to afford the product as a pale yellow solid. Yield: 65%.
ESI-MS (MeOH–H2O, v/v 1/999), m/z (%): 536.25 [1+Mn+H2O]+, 550.25 [1+
Mn+MeOH]+; Anal. Calcd. for C23H38N4O15MnCl2: C, 37.48; H, 5.16; N, 7.60.
Found: C, 37.35; H, 4.81; N, 7.49; IR: 1742, 1703, 1637, 1618, 1401, 1144, 1120,
1089, 627 cm−1. Small pale yellow bulk crystals suitable for X-ray crystallogra-
phy were grown via slow evaporation of the EtOH filtrate at room temperature.
[10] C. Janiak, A critical account on π–π stacking in metal complexes with aromatic
nitrogen-containing ligands, J. Chem. Soc., Dalton Trans. (2000) 3885–3896.
[11] (a) Magnetism: a supramolecular function, in: O. Kahn (Ed.), Series C: Mathe-
matical and Physical Sciences, vol. 484, Kluwer, Carcans-Maubuisson, 1995,
p. 223;
Supplementary data (Experimental details, characterizations of
the compounds, crystallographic data and selected bond lengths (Å)
and angles (°) for 2, and equations referred in the manuscript.
10.1016/j.inoche.2012.03.042. CCDC number for 2: 826816.
References
[1] D.W. Christianson, Structural chemistry and biology of manganese metalloenzymes,
Prog. Biophys. Mol. Biol. 67 (1997) 217–252.
[2] (a) J. Eisinger, R.G. Shulman, W.E. Blumberg, Relaxation enhancement by para-
magnetic ion binding in deoxyribonucleic acid solutions, Nature 192
(1961) 963–964;
(b) J.H. Jia, P. Hubberstey, N.R. Champness, M. Schroder, in: M.W. Hosseini (Ed.),
Structure and Bonding: Molecular Networks, vol. 132, Springer, Berlin, 2009,
pp. 135–161.
(b) A.S. Mildvan, M. Cohn, Magnetic resonance studies of the interaction of the
manganous ion with bovine serum albumin, Biochemistry 338 (1963)
910–919;
[12] A.M. Madalan, V. Voronkova, R. Galeev, L. Korobchenko, J. Magull, H.W. Roesky, M.
Andruh, Exchange interactions at the supramolecular level — synthesis, crystal
structure, magnetic properties, and EPR spectra of [Mn(MAC)(TCNQ)2] (MAC=
pentaaza macrocyclic ligand; TCNQ·- =radical anion of 7,7,8,8-tetracyano-p-
quinodimethane), Eur. J. Inorg. Chem. (2003) 1995–1999.
[13] C. Hureau, S. Blanchard, M. Nierlich, G. Blain, E. Rivière, J.J. Girerd, E. Anxolabéhère-
Mallart, G. Blondin, Controlled redox conversion of new X-ray-characterized mono-
and dinuclear heptacoordinated Mn (II) complexes into di-μ-oxo-dimanganese core
complexes, Inorg. Chem. 43 (2004) 4415–4426.
(c) J. Eisinger, F. Fawaz-Estrup, R.G. Shulman, Binding of Mn2+ to nucleic acids,
J. Chem. Phys. 42 (1965) 43–53;
(d) S. Aime, S. Canton, S.G. Crich, E. Terreno, 1H and 17O relaxometric investiga-
tions of the binding of Mn(II) ion to human serum albumin, Magn. Reson.
Chem. 40 (2002) 41–48.
[3] (a) P.V. Bernhardt, G.A. Lawrence, Complexes of polyaza macrocycles bearing
pendent coordinating groups, Coord. Chem. Rev. 104 (1990) 297–343;
(b) T.A. Kaden, Structural aspects of metal complexes with functionalized
azamacrocyclic ligands, Pure Appl. Chem. 65 (1993) 1477–1483;
(c) K.P. Wainwright, Synthetic and structural aspects of the chemistry of saturated
polyaza macrocyclic ligands bearing pendant coordinating groups attached to
nitrogen, Coord. Chem. Rev. 166 (1997) 35–90;
[14] (a) H.A. Benesi, J.H. Hildebrand, A spectrophotometric investigation of the inter-
action of iodine with aromatic hydrocarbons, J. Am. Chem. Soc. 71 (1949)
2703–2707;
(b) C. Yang, L. Liu, T.W. Mu, Q.X. Guo, The performance of the Benesi–Hildebrand
method in measuring the binding constants of the cyclodextrin complexa-
tion, Anal. Sci. 16 (2000) 537–539;
(c) M.I. Rodríguez-Cáceres, R.A. Agbaria, I.M. Warner, Fluorescence of metal–ligand
complexes of mono- and di-substituted naphthalene derivatives, J. Fluoresc. 15
(2005) 185–190.
(d) J. Costamagna, G. Ferraudi, B. Matsuhiro, M. Campos-Valette, J. Canales, M.
Villagran, J. Vargas, M.J. Aguirre, Complexes of macrocycles with pendant
arms as models for biological molecules, Coord. Chem. Rev. 196 (2000)
125–164;
(e) K.P. Wainwright, Applications for polyaza macrocycles with nitrogen-
attached pendant arms, in: A.G. Sykes (Ed.), Advances in Inorganic Chemistry,
vol. 52, Academic Press, San Diego, 2001, pp. 293–334;
[15] (a) J.R. Aldrich-Wright, I. Greguric, R.S. Vagg, K.A. Vickery, P.A. Williams, Devel-
opment of DNA-immobilised chromatographic stationary phases for optical
resolution and DNA-affinity comparison of metal complexes, J. Chromatogr.
A 718 (1995) 436–443;
(f) E.K. Barefield, Coordination chemistry of N-tetraalkylated cyclam ligands—a
status report, Coord. Chem. Rev. 254 (2010) 1607–1627;
(g) R.E. Mewis, S.J. Archibald, Biomedical applications of macrocyclic ligand com-
plexes, Coord. Chem. Rev. 254 (2010) 1686–1712.
[4] S. Aime, M. Botta, S.G. Crich, G.B. Giovenzana, G. Jommi, R. Pagliarin, M. Sisti, Syn-
thesis and NMR studies of three pyridine-containing triaza macrocyclic triacetate
ligands and their complexes with lanthanide ions, Inorg. Chem. 36 (1997)
2992–3000.
[5] J.W. Steed, J.L. Atwood, Supramolecular Chemistry, Wiley, Chichester, 2000.
[6] (a) E. Colacio, J.P. Costes, R. Kivekas, J.P. Laurent, J. Ruiz, M. Sundberg, Structural
and magnetic studies of a syn-anti carboxylate-bridged helix-like chain
copper(II) complex, Inorg. Chem. 31 (1992) 774–778;
(b) J.R. Aldrich-Wright, R.S. Vagg, P.A. Williams, Design of chiral picen-based
metal complexes for molecular recognition of α-aminoacids and nucleic
acids, Coord. Chem. Rev. 166 (1997) 361–388;
(c) I. Greguric, J.R. Aldrich-Wright, G.J. Collins, A 1H NMR study of the binding of
Δ-[Ru(phen)2DPQ]2+ to the hexanucleotide d(GTCGAC)2—evidence for in-
tercalation from the minor groove, J. Am. Chem. Soc. 119 (1997) 3621–3622;
(d) S.D. Choi, M.S. Kim, S.K. Kim, P. Lincoln, E. Tuite, B. Nordén, Binding mode of
[Ruthenium(II) (1,10-Phenanthroline)2L]2+ with poly(dT*dA-dT) triplex. Ligand
size effect on third strand stabilization, Biochemistry 36 (1997) 214–223;
(e) P.P. Pellegrini, J.R. Aldrich-Wright, Evidence for chiral discrimination of rutheniu-
m(II) polypyridyl complexes by DNA, Dalton Trans. (2003) 176–183;
(f) S. Banerjee, S. Mondal, S. Sen, S. Das, D.L. Hughes, C. Rizzoli, C. Desplanches, C.
Mandal, S. Mitra, Four new dinuclear Cu(II) hydrazone complexes using var-
ious organic spacers: syntheses, crystal structures, DNA binding and cleavage
studies and selective cell inhibitory effect towards leukemic and normal lym-
phocytes, Dalton Trans. (2009) 6849–6860;
(b) M. Vazquez, A. Taglietti, D. Gatteschi, L. Sorace, C. Sangregorio, A.M.
Gonzalez, M. Maneiro, R.M. Pedrido, M.R. Bermejo, A 3D network of helicates
fully assembled by π-stacking interactions, Chem. Commun. (2003)
1840–1841;
(c) H.W. Roesky, M. Andruh, The interplay of coordinative, hydrogen bonding
and π–π stacking interactions in sustaining supramolecular solid-state archi-
tectures: a study case of bis(4-pyridyl)- and bis(4-pyridyl-N-oxide) tectons,
Coord. Chem. Rev. 236 (2003) 91–119;
(g) H.K. Liu, P.J. Sadler, Metal complexes as DNA intercalators, Acc. Chem. Res. 44
(2011) 349–359.