Please do not adjust margins
ChemComm
Page 4 of 4
DOI: 10.1039/C7CC00704C
COMMUNICATION
Journal Name
11 R. Dawson, L. A. Stevens, T. C. Drage, C. E. Snape, M. W
.Smith, D. J. Adams and A. I. Cooper, J. Am. Chem. Soc., 2012,
134, 10741.
12 (a) O. Plietzsch, C. I. Schilling, T. Grab, S. L. Grage, A. S.
Ulrich, A. Comotti, P. Sozzani, T. Muller and S. Bräse, New J.
Chem., 2011, 35, 1577. (b) Y. Liu, S. Wu, G. Wang , G. Yu, J.
slightly larger than its sphere counterpart, while to the best of our
knowledge this value is sufficiently superior to those of most NOPs
like CTF-0 and binaphthol-based HCPs11. It may be reasonable
considering the abundant narrow ultramicropores (<1 nm) and the
presence of electron-rich thiophene rings makes a significant
contribution to CO2 adsorption at low loadings, considering
thermodynamic size of CO2. Thus, these materials would hold
considerable promise for post-combustion carbon capture
applications.
Guan, C. Pan and Z. Wang, J. Mater. Chem. A, 2014,
(c) D. Y. Chen, S. Gu, Y. Fu, Y. L. Zhu, C. Liu, G. H. Li, G. P.
Yuand C. Y. Pan, Polym. Chem., 2016, , 3416.
2, 7795.
7
13 (a) M. G. R. T. Karl T. Jackson, Polym. Chem., 2011, 2775. (b)
L. Pan, Q. Chen, J.H. Zhu, J.G. Yu, Y. J. He and B.H. Han, Polym.
In summary, we have successfully synthesized a tubular porous
organic polymer (CMP-CSU13) via an in-situ template approach.
This strategy was quite convenient in terms of handling and
separation and was applicable to other multiply halogenate
monomers, which was significant in preparing functional CMP tubes
on a large scale. As an added bonus, the resultant networks have
demostrated an unusual large total pore volume together with high
adsorption enthalpies for CO2 (up to 40.3 KJ/mol). Moreover, such
thiophene-functional nitrogen-rich networks feature possessed
exceptionally high IAST ideal selectivities over nitrogen (up to 223 at
273 K) at low CO2 loading, which make them promising sorbents for
gas separations. Given the universality of building blocks in
chemistry and the structural diversity of CMPs, we expect this work
could also provide a new route for developing dispersible and
uniform functional CMPs with controllable morphology.
Chem., 2015, 6, 2478. (c) X. Fu, Y. Zhang, S. Gu, Y. Zhu, G. Yu,
C. Pan, Y. Hu, Chem.-A Euro. J., 2015, 21, 13357.
14 (a) X. Feng, L. Chen, Y. Dong and D. Jiang, Chem Commun,
2011, 47, 1979. (b)M. R. Liebl and J. R. Senker, Chem. Mater.,
2013, 25, 970. (c) C. Y. Pei, T. Ben, Y. Q. Li and S. L. Qiu, Chem.
Commun., 2014, 50, 6134.
15 (a)H. Yu, C. Shen, M. Tian, J. Qu and Z. Wang,
Macromolecules, 2012, 45, 5140. (b) O. G. Rabbani and A. H.
M. El-Kader, Chem. Mater., 2012, 1511.
16 Z. Xiang and D. Cao, Macromol. Rapid. Commun., 2012, 33
,
1184.
17 Y. Xu, A. Nagai and D. L. Jiang, Chem. Commun., 2013, 49
,
1591.
18 M. Dogru, A. Sonnauer, A. Gavryushin, P. Knochel and T.
Bein, Chem. Commun., 2011, 47, 1707.
19 S. Wan, J. Guo, J. Kim, H. Ihee and D. Jiang, Angew. Chem.
Int. Ed., 2008, 47, 8826.
Acknowledgements
We acknowledge the financially support from the National Science
Foundation of China (Nos. 51662036, 21674129, 21376272 and
21636010), State Key Laboratory of Fine Chemicals (KF1604) and
Joint Funds of Hunan Provincial Natural Science Foundation and
ZhuZhou Municipal Government of China (2015JJ5010).
20 A. Li, H. Sun, D. Tan, W. Fan, S. Wen, X. Qing, G. Li, S. Li and
W. Deng, Energ. Environ. Sci., 2011, 4, 2062.
21 D. Tan, W. Xiong, H. Sun, Z. Zhang, W. Ma, C. Meng, W. Fan
and A. Li, Micropor. Mesopor. Mat., 2013.
22 N. Kang, J.H. Park, J.Choi, J.Jin, J.Chun, I. G. Jungand and
S.U.Son, Angew. Chem. Int. Ed., 2012, 51, 6626.
Notes and references
23 (a)X. Zhuang, D. Gehrig, N. Forler, H. Liang, M. Wagner, M. R.
Hansen, F. Zhang and X. Feng, Adv. Mater., 2015, 27, 3789.
(b) M. G. Schwab, D. Crespy, X. Feng, K. Landfester and K.
Müllen, Macromol. Rapid Commun., 2011, 32, 1798.
1
2
3
H. Jiang, D. Feng, T. Liu, J. Li and H. Zhou, J. Am. Chem. Soc.,
2012, 134, 14690.
N. B. McKeown and P. M. Budd, Chem. Soc. Rev., 2006, 35
675.
J. X. Jiang, F. B. Su, A. Trewin, C. D. Wood, H. J. Niu, J. T. A.
Jones, Y. Z. Khimyak and A. I. Cooper, J. Am. Chem. Soc.,
2008, 130, 7710.
,
24 (a) X. Zhu, C. Tian, S. M. Mahurin, S. Chai, C. Wang, S. Brown,
G. M. Veith, H. Luo, H. Liu and S. Dai, J. Am. Chem. Soc., 2012,
134, 10478. (b) S. Ren, R. Dawson, A. Laybourn, J. Jiang, Y.
4
5
X. Liu, Y. Xu, D. Jiang, J. Am. Chem. Soc. 2012, 134, 8738.
T. Ben, H. Ren, S. Ma, D. Cao, J. Lan, X. Jing, W. Wang, J. Xu,
F. Deng, J. M. Simmons, S. Qiu and G. Zhu, Angew Chem Int
Ed, 2009, 48, 9457.
Khimyak, D. J. Adams and A. I. Cooper, Polym. Chem., 2012, 3,
928. (c) S. Gu, J. He, Y. Zhu, Z. Wang, D. Chen, G. Yu, J. Guan
and K. Tao, ACS Appl. Mater. Inter., 2016, 8, 18383.
25 T. Yamamoto, Bull. Chem. Soc. Jpn., 1999, 72, 621.
26 L. Zhu, Y. Xu, W. Yuan,J. Xi, X. Huang, X. Tang, and S. Zheng,
Adv. Mater., 2006, 18, 2997.
6
N. B. McKeown, B. Gahnem, K. J. Msayib, P. M. Budd, C. E.
Tattershall, K. Mahmood, S. Tan, D. Book, H. W. Langmi and
A. Walton, Angew. Chem. Int. Ed., 2006, 45, 1804.
C. J. Doonan, D. J. Tranchemontagne, T. G. Glover, J. R. Hunt
7
8
and O. M. Yaghi, Nat. Chem., 2010, 2, 235.
27 Y. Xu, S. Jin, H. Xu, A. Nagai and D. Jiang, Chem. Soc. Rev.,
2013, 42, 8012.
(a)P. Katekomol, J. Roeser, M. Bojdys, J. Weber and A.
Thomas, Chem. Mater., 2013, 25, 1542. (b) S. Wu, Y. Liu, G.
Yu,C. Pan,Y. Du,X. Xiong and Z. Wang, Macromolecules, 2014,
47, 2875. (c) K. Yuan, C. Liu, J. Han, G. Yu, J. Wang, H. Duan, Z.
28 W. Zhao, Z.Hou, Z. Yao, X.Zhuang, F. Zhang and X.Feng,
Polym. Chem., 2015, 6, 7171.
29 M. R. Liebl and J. R. Senker, Chem. Mater., 2013, 25, 970-
Wang and X. Jian, RSC Adv., 2016, 6, 12009.
980.
9
Q. Chen, M. Luo, T. Wang, J. Wang, D. Zhou, Y. Han, C. Zhang,
C. Yan and B. Han, Macromolecules, 2011, 44, 5573.
10 C. Zhang, Y. Liu, B. Li, B. Tan, C. Chen, H. Xu and X.Yang, ACS
Macro. Lett., 2011, , 190.
1
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins