Page 5 of 6
Journal of the American Chemical Society
1
2
3
4
5
6
7
8
Kumar, A.; Singh, V.; Ghosh, S. Butenolide: A Novel Synthesis
F, see: (g) Zhang, L.-q.; Zhao, Y.-y.; Huang, C.; Chen, K.-x.; Li,
Y.-m. Tetrahedron 2016, 72, 8031. For didemnenone A, see: (h)
Forsyth, C. J.; Clardy, J. J. Am. Chem. Soc. 1988, 110, 5912.
and Biological Activities, 1st ed.; LAP LAMBERT Academic
Publishing: Saarbrücken, Germany, 2012. (c) Churchill M. E. A.;
Chen, L. Chem. Rev. 2011, 111, 68. (d) Schulz, S.; Hötling, S.
Nat. Prod. Rep. 2015, 32, 1042. (e) Ren, Y.; Yu, J.; Kinghorn, A.
D. Curr. Med. Chem. 2016, 23, 2397. For a recent example on
γ-lactone based recyclable polymer, see: (f) Zhu, J.-B.; Watson, E.
M.; Tang, J.; Chen, E. Y.-X. Science 2018, 360, 398.
(7) (a) Shakeri, M.; Tai, C.-W.; Göthelid, E.; Oscarsson, S.;
Bäckvall, J.-E. Chem. Eur. J. 2011, 17, 13269. (b) Johnston, E.
V.; Verho, O.; Kärkäs, M. D.; Shakeri, M.; Tai, C.-W.; Palmgren,
P.; Eriksson, K.; Oscarsson, S.; Bäckvall, J.-E. Chem. Eur. J.
2012, 18, 12202. (c) Verho, O.; Gustafson, K. P. J.; Nagendiran,
A.; Tai, C.-W.; Bäckvall, J.-E. ChemCatChem. 2014, 6, 3153. (d)
Nagendiran, A.; Sörensen, H.; Johansson, M. J.; Tai, C.-W.;
Bäckvall, J.-E. Green Chem. 2016, 18, 2632. (e) Verho, O.;
Zheng, H.; Gustafson, K. P. J.; Nagendiran, A.; Zou, X.; Bäckvall,
J.-E. ChemCatChem. 2016, 8, 773. (f) Nagendiran, A.; Pascanu,
V.; Gómez, A. B.; Miera, G. G.; Tai, C.-W.; Verho, O.;
Martín-Matute, B.; Bäckvall, J.-E. Chem. Eur, J. 2016, 22, 7184.
(g) Li, M.-B.; Posevins, D.; Gustafson, K. P. J.; Tai, C.-W.;
Shchukarev, A.; Qiu, Y.; Bäckvall, J.-E. Chem. Eur. J. 10.
1002/chem.201805118.
(2) For selected books and reviews, see: (a) Ogliaruso, M. A.;
Waefe, J. F. Synthesis of Lactones and Lactams; John Wiley: New
York, 2010. (b) Yanai, H. Chapter 10 – Green and Catalytic
Methods for γ-Lactone Synthesis. Green Synthetic Approaches for
Biologically Relevant Heterocycles; Brahmachari, G., Ed.;
Elsevier: Boston, 2015. (c) Kitson, R. R. A.; Millemaggi, A.;
Taylor, R. J. K. Angew. Chem., Int. Ed. 2009, 48, 9426. (d)
Kammerer, C.; Prestat, G.; Madec, D.; Poli, G. Acc. Chem. Res.
2014, 47, 3439. (e) Mao, B.; Fañanás-Mastral, M.; Feringa, B. L.
Chem. Rev. 2017, 117, 10502. For recent examples, see: (f) Zhou,
J.; Fu, C.; Ma, S. Nat. Commun. 2018, 9, 1654. (g) Conway, J. H.;
Rovis, T. J. Am. Chem. Soc. 2018, 140, 135.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(8) For selected books and reviews on chemoselective
carbonylation reactions, see: (a) Kollár, L. Modern carbonylation
methods; Wiley-VCH: Weinheim, Germany, 2008. (b) Wu, X.-F.;
Neumann, H.; Beller, M. Chapter 1 – Transition-Metal-Catalyzed
Carbonylative Domino Reactions. Domino Reactions: Concepts
for Efficient Organic Synthesis; Tietze, L. F., Ed.; Wiley-VCH:
Weinheim, Germany, 2014. (c) Barnard, C. F. J. Organometallics
2008, 27, 5402. (d) Wu, X. F.; Neumann, H.; Beller, M. Chem.
Soc. Rev. 2011, 40, 4986. (e) Liu, Q.; Zhang, H.; Lei, A. Angew.
Chem., Int. Ed. 2011, 50, 10788. (f) Wu, X. F.; Neumann, H.;
Beller, M. Chem. Rev. 2013, 113, 1. (g) Wu, X.-F.; Fang, X.; Wu,
L.; Jackstell, R.; Neumann, H.; Beller, M. Acc. Chem. Res. 2014,
47, 1041. (h) Gadge, S. T.; Bhanage, B. M. RSC Adv. 2014, 4,
10367. (i) Shen, C.; Wu, X.-F. Chem. Eur. J. 2017, 23, 2973. (j)
Bai, Y.; Davis, D. C.; Dai, M. J. Org. Chem. 2017, 82, 2319.
(3) For selected examples, see: (a) Davies, J. J.; Krulle, T. M.;
Burton, J. W. Org. Lett. 2010, 12, 2738. (b) Schnermann, M. J.;
Beaudry, C. M.; Genung, N. E.; Canham, S. M.; Untiedt, N. L.;
Karanikolas, B. D. W.; Sütterlin, C.; Overman, L. E. J. Am. Chem.
Soc. 2011, 133, 17494. (c) Newhouse, T. R.; Kaib, P. S. J.; Gross,
A. W.; Corey, E. J. Org. Lett. 2013, 15, 1591. (d) Liang, R.; Chen,
K.; Zhang, Q.; Zhang, J.; Jiang, H.; Zhu, S. Angew. Chem., Int.
Ed. 2016, 55, 2587.
(4) For selected book and reviews, see: (a) Metal Catalyzed
Cascade Reactions, 1st ed.; Müller, T. J. J., Ed.; Springer-Verlag:
Berlin Heidelberg, 2006. (b) Fogg, D. E.; dos Santos, E. N.
Coord. Chem. Rev. 2004, 248, 2365. (c) Nicolaou, K. C.;
Edmonds, D. J.; Bulger, P. G. Angew. Chem., Int. Ed. 2006, 45,
7134. (d) Grondal, C.; Jeanty, M.; Enders, D. Nat. Chem. 2010, 2,
167. (e) Volla, C. M. R.; Atodiresei, I.; Rueping, M. Chem. Rev.
2014, 114, 2390.
(9) For review on ligand- and solvent-controlled chemoselective
carbolylation reactions, see: (a) Peng, J.-B.; Wu, X.-F. Angew.
Chem. Int. Ed. 2018, 57, 1152. For selected examples on ligand-
and solvent-controlled chemoselective carbolylation reactions,
see: (b) Liu, J.; Liu, Q.; Franke, R.; Jackstell, R.; Beller, M. J. Am.
Chem. Soc. 2015, 137, 8556. (c) Xu, T.; Sha, F.; Alper, H. J. Am.
Chem. Soc. 2016, 138, 6629.
(5) For reviews, see: (a) Piera, J.; Bäckvall, J.-E. Angew. Chem.
Int. Ed. 2008, 47, 3506. (b) Deng, Y.; Persson, A. K. Å.;
Bäckvall, J.-E. Chem. Eur. J. 2012, 18, 11498. (c) Zhang, D.; Liu,
J.; Córdova, A.; Liao, W.-W. ACS Catal. 2017, 7, 7051. (d) Yang,
B.; Qiu, Y.; Bäckvall, J.-E. Acc. Chem. Res. 2018, 51, 1520. For
selected examples, see: (e) Zhu, C.; Yang, B.; Bäckvall, J.-E. J.
Am. Chem. Soc. 2015, 137, 11868. (f) Qiu, Y.; Yang, B.; Zhu, C.;
Bäckvall, J.-E. Angew. Chem., Int. Ed. 2016, 55, 6520. (g) Qiu,
Y.; Yang, B.; Zhu, C.; Bäckvall, J.-E. J. Am. Chem. Soc. 2016,
138, 13846. (h) Qiu, Y.; Yang, B.; Jiang, T.; Zhu, C.; Bäckvall,
J.-E. Angew. Chem., Int. Ed. 2017, 56, 3221. (i) Zhu, C.; Yang,
B.; Qiu, Y.; Bäckvall, J.-E. Angew. Chem., Int. Ed. 2016, 55,
14405. (j) Naidu, V. R.; Posevins, D.; Volla, M. R.; Bäckvall,
J.-E. Angew. Chem., Int. Ed. 2017, 56, 1590. (k) Bartholomeyzik,
T.; Pendrill, R.; Lihammar, R.; Jiang, T.; Widmalm, G.; Bäckvall,
J.-E. J. Am. Chem. Soc. 2018, 140, 298.
(10) (a) Taguchi, A.; Schüth, F. Micropor. Mesopor. Mater.
2005, 77, 1. (b) Schmidt-Winkel, P.; Lukens, Jr., W. W.; Zhao,
D.; Yang, P.; Chmelka, B.; Stucky, G. D. J. Am. Chem. Soc. 1999,
121, 254. (c) Han, Y.; Lee, S. S.; Ying, J. Y. Chem. Mater. 2006,
18, 643.
(11) For TEM images and XPS spectra of PdII-AmP-MCF before
and after reaction Supporting Information, P. S9.
(12) In one experiment the use of colloidal palladium afforded
25% yield of 2a together with 15% yield of 3a (See Supporting
Information, Table S2, entry 12).
(13) The relative stereochemistry of 2 was determined by
NOESY spectrum of 2a (see Supporting Information, P. S10).
Single crystal structure of 5 (CCDC 1865456) synthesized by
hydrogenation of 2f (Scheme 6) further confirmed the structure.
(14) For the preparation of (S)-1, see the Supporting Information,
(6) For strigolactone, see: (a) Cook, C. E.; Whichard, L. P.;
Turner, B.; Wall, M. E.; Egley, G. H. Science 1966, 154, 1198. (b)
Akiyama, K.; Matsuzaki, K.; Hayashi, H. Nature 2005, 435, 824.
(c) Zwanenburg, B. Pospíšil, T Mol. Plant. 2013, 6, 38. (d) Ueno,
K.; Nomura, S.; Muranaka, S.; Mizutani, M.; Takikawa, H.;
Sugimoto, Y. J. Agric. Food Chem. 2011, 59, 10485. (e) Johnson,
A. W.; Gowda, G.; Hassanali, A.; Knox, J.; Monaco, S.; Razavi,
Z.; Rosebery, G. J. Chem. Soc., Perkin Trans. 1 1981, 1734. For
sinularone C, see: (f) Shi, H.; Yu, S.; Liu, D.; van Ofwegen, L.;
Proksch, P.; Liu, W. Mar. Drugs 2012, 10, 1331. For scrodentoid
P. S19
ACS Paragon Plus Environment