ChemComm
Page 4 of 5
Communication
DOI: 10.1039/C7CC04958G
6
A. Shultz, A. Sarjeant, O. Farha, J. Hupp, S. Nguyen, J. Am. Chem. Soc. 2011,
133, 13252.
homogeneous Hemin is more than 10 times slower than
porph@HKUST-1-β whereas HKUST-1 reacts ~5 times slower with a
rate of 5.37×10-5 mM s-1. This suggests that catalytic activity can be
attributed to the FeTPPS in the framework rather than the Cu
paddlewheels given that THB is small enough to diffuse into the
porphyrin-containing cages. In addition, both porph@HKUST-1-β
and porphMOM-1 exhibit higher conversion than reported for
7
8
S. Yuan, Y.-K. Deng, D. Sun, Chem. Eur. J. 2014, 20, 10093.
S. Yuan, Y.-K. Deng, W.-M. Xuan, X.-P. Wang, S.-N. Wang, J.-M. Dou, D. Sun,
CrystEngComm 2014, 16, 3829.
9
M. Dincă, J. R. Long, J. Am. Chem. Soc. 2007, 129, 11172.
T. K. Prasad, D. H. Hong, M. P. Suh, Chem. Eur. J. 2010, 16, 14043.
J. Zhao, L. Mi, J. Hu, H. Hou, Y. Fan, J. Am. Chem. Soc. 2008, 130, 15222.
M. Lalonde, W. Bury, O. Karagiaridi, Z. Brown, J. T. Hupp, O. K. Farha, J.
Mater. Chem. A. 2013, 1, 5453.
10
11
12
FeTPPS@HKUST-1. porph@HKUST-1-β was chosen as
a
representative heterogeneous catalyst. The filtrate of
porph@HKUST-1-β after catalysis did not exhibit the characteristic
UV-Vis peak of FeTPPS (Fig. S1), indicating that no leaching of
FeTPPS had occurred during catalysis. Moreover, recyclability data
revealed that porph@HKUST-1-β can be reused for at least four
cycles without significant decrease of catalysis activity and loss of its
crystallinity (Fig. S11 and S12).
13
14
C. K. Brozek, M. Dincâ, Chem. Sci. 2012, 3, 2110
M. Kim, J. F. Cahill, H. Fei, K, A. Prather, S. M. Cohen, J. Am. Chem. Soc.
2012, 134, 18082.
15
16
17
18
19
M. Kondo, S. Furukawa, K. Hirai, S. Kitagawa, Angew. Chem. Int. Ed. 2010,
49, 5327.
B. J. Burnett, P. M. Barron, C. Hu, W. Choe, J. Am. Chem. Soc. 2011, 133,
9984.
O. Karagiaridi, M. B. Lalonde, W. Bury, A. A. Sarjeant, O. K. Farha, J. T. Hupp,
J. Am. Chem. Soc. 2012, 134, 18790.
In summary, we report herein a new PSM strategy that involves
postsynthetic metal ion exchange and ligand addition in a one-pot
T. Li, M. T. Kozlowski, E. A. Doud, M. N. Blakely, N. L. Rosi, J. Am. Chem. Soc.
2013, 135, 11688.
process.
A porphyrin linked MOM (porphMOM-1) thereby
R. Kitaura, F. Iwahori, R. Matsuda, S. Kitagawa, Y. Kubota, M. Takata, T. C.
Kobayashi, Inorg. Chem. 2004, 43, 6522
transforms into a porphyrin-encapsulating MOM (porph@HKUST-1-
β) in single-crystal to single-crystal fashion. Notably, HKUST-1-β is
the first example of a supramolecular isomer of the archetypal
coordination network HKUST-1 and results from its 12 square
paddlewheels forming an irregular polyhedral cage that is distinct
from the regular polyhedral cage observed in HKUST-1.
porph@HKUST-1-β was found to exhibit enhanced stability,
permanent porosity and biomimetic catalytic activity towards
oxidation of a polyphenol than porphMOM-1. This new PSE/PSA
strategy enriches the toolbox of PSM strategies and enables the
synthesis of a functional porous material that would otherwise be
difficult or impossible to achieve. Further, the concerted metal
exchange/ligand installation process is unlikely to be limited to the
specific case in question. Indeed, it should be general for MOFs that
are sustained by labile transition metals such as Zn(II) and Cd(II).
The data for porphMOM-1 was collected at the Advanced Photon
Source on beamline 15ID-C of ChemMatCARS Sector 15, which is
20
21
H. J. Park. Y. E. Cheon, M. P. Suh, Chem. Eur. J. 2010, 16, 11662.
S. Yuan, W. Lu, Y.-P. Chen, Q. Zhang, T.-F. Liu, D. Feng, X. Wang, J. Qin, H.-C.
Zhou. J. Am. Chem. Soc. 2015, 137, 3177.
22
23
24
J.-R. Li, D. J. Timmons, H.-C. Zhou, J. Am. Chem. Soc. 2009, 131, 6368.
Z. Chen. S. Xiang, D. Zhao, B. Chen, Cryst. Growth Des. 2009, 9, 5293.
Z.-J. Zhang, W. Shi, Z. Niu, H.-H. Li, B. Zhao, P. Cheng, D.-Z. Liao, S.-P. Yan,
Chem. Commun. 2011, 47, 6425.
25
26
27
28
29
X.-R. Hao, X.-L. Wang, K.-Z. Shao, G.-S. Yang, Z.-M. Su, G. Yuan,
CrystEngComm. 2012, 14, 5596
H. Ma, S. Wang, H. Liu, F. Meng, W. Zheng, W. Gao, CrystEngComm. 2015,
17, 1001
D. Kim, X. Liu, M. Oh, X. Song, Y. Zou, D. Singh, K. S. Kim, M. S. Lah,
CrystEngComm. 2014, 16, 6391.
S. S. Chui, S. M. Lo, J. P. Charmant, A. G. Orpen, I. D. Williams, Science 1999,
283, 1148.
J. Lu, A. Mondal, B. Moulton, M. J. Zaworotko, Angew. Chem. Int. Ed. 2001,
113, 2171.
30
31
F. Allen, Acta Crystallogr. 2002, B58, 380.
M. K. Bhunia, J. T. Hughes, J. C. Fettinger, A. Navrotsky, Langmuir 2013, 29,
8140.
principally
supported
by
the
National
Science
32
33
M. Okeeffe, O. M. Yaghi, Chem. Rev. 2012, 112, 2.
M. Okeeffe, M. A. Peskov, S. Ramsden, O. M. Yaghi, Acc. Chem. Res. 2008,
41, 12.
Foundation/Department of Energy under grant number NSF/CHE-
0822838. The Advanced Photon Source is supported by the U. S.
Department of Energy, Office of Science, Office of Basic Energy
Sciences, under Contract No. DE-AC02-06CH11357. ZZ
acknowledges the China Young 1000 Talents program and NSFC NO.
21601093. MZ acknowledges the generous financial support of the
Science Foundation Ireland (Grant 13/RP/B2549). We thank Prof.
Peng Cheng and Prof. Wei Shi from Nankai University for their
assistance in measurement of ICP-MS.
34
35
B. Moulton, J. J. Lu, A. Mondal, M. J. Zaworotko, Chem. Commun. 2001, 863.
M. Eddaoudi, J. Kim, J. B. Wachter, H. K. Chae, M. O'Keeffe, O. M. Yaghi, J.
Am. Chem. Soc. 2001, 123, 4368.
36
37
Z. Zhang, L. Wojtas, M. J. Zaworotko, Cryst. Growth Des. 2011, 11, 1441.
Z. Zhang, L. Zhang, L. Wojtas, M. Eddaoudi, M. J. Zaworotko, J. Am. Chem.
Soc. 2012, 134, 928.
38
39
R. W. Larsen, L. Wojtas, J. Perman, R. L. Musselman, M. J. Zaworotko, C. M.
Vetromile, J. Am. Chem. Soc. 2011, 133, 10356.
R. W. Larsen, J. Miksovska, R. L. Musselman, L. Wojtas, J. Phys. Chem. A
2011, 115, 11519.
40
41
42
Z. Wei, W. Lu, H.-L. Jiang, H.-C. Zhou, Inorg. Chem. 2013, 52, 1164.
Y. Chen, T. Hoang, S. Ma, Inorg. Chem. 2012, 51, 12600.
Q. Wang, Z. Yang, L. Wang, M. Ma, B. Xu, Chem. Commun. 2007, 10, 1032.
Notes and References
1
S. Cohen, Chem. Rev. 2012, 112, 970.
2
S. R. Batten, S. M. Neville, D. R. Turner, Coordination Polymers: Design,
Analysis and Application; Royal Society of Chemistry, Cambridge, UK, 2009.
L. R. MacGillivray, Metal-Organic Frameworks: Design and Application, John
Wiley & Sons, Hoboken, New Jersey, 2010.
3
4
5
Z. Zhang, W.-Y. Gao, L. Wojtas, S. Ma, M. Eddaoudi, M. J. Zaworotko, Angew.
Chem. Int. Ed. 2012, 51, 9330.
K. L. Mulfort, O. K. Farha, C. L. Stern, A. A. Sarjeant, J. T. Hupp, J. Am. Chem.
Soc. 2009, 131, 3866.
4 | Chem.Commun., 2017, 00, 1-3
This journal is © The Royal Society of Chemistry 2017