Communication
ChemComm
Notes and references
1
(a) K. Uneyama, Organofluorine Chemistry, Blackwell Publishing Ltd,
Oxford, 2006; (b) P. Kirsch, Modern Fluoroorganic Chemistry: Synthesis,
Reactivity, Applications, Wiley-VCH, Weinheim, Germany, 2nd edn, 2013,
p. 1; (c) K. Uneyama, Organofluorine Chemistry, Blackwell Publishing Ltd,
Oxford, 2006; (d) P. Kirsch, Modern Fluoroorganic Chemistry: Synthesis,
Reactivity, Applications, Wiley-VCH, Weinheim, Germany, 2nd edn, 2013.
(a) C. Hansch, A. Leo, S. H. Unger, K. H. Kim, D. Nikaitani and
E. J. Lien, J. Med. Chem., 1973, 16, 1207–1216; (b) C. Hansch, A. Leo
and R. W. Taft, Chem. Rev., 1991, 91, 165–195.
Scheme 5 Diversification of cyanodifluoromethylation product 4a.
2
ꢀ
delivers the CN anion. On the other hand, the coordination of
3 (a) C. Alonso, E. Martinez de Marigorta, G. Rubiales and F. Palacios,
Chem. Rev., 2015, 115, 1847–1935; (b) S.-M. Wang, J.-B. Han, C.-P. Zhang,
H.-L. Qin and J.-C. Xiao, Tetrahedron, 2015, 71, 7949–7976; (c) N. Levi,
D. Amir, E. Gershonov and Y. Zafrani, Synthesis, 2019, 4549–4567.
4 (a) C. S. Thomoson, X.-J. Tang and W. R. Dolbier, J. Org. Chem., 2015,
80, 1264–1268; (b) Q.-Y. Lin, X.-H. Xu, K. Zhang and F.-L. Qing,
Angew. Chem., Int. Ed., 2016, 55, 1479–1483; (c) Z. Zhang, X.-J. Tang
and W. R. Dolbier, Org. Lett., 2016, 18, 1048–1051; (d) Q.-Y. Lin,
Y. Ran, X.-H. Xu and F.-L. Qing, Org. Lett., 2016, 18, 2419–2422;
(e) Z. Zhang, H. Martinez and W. R. Dolbier, J. Org. Chem., 2017, 82,
BINAP to CuCN produces the (BINAP)–CuCN complex. The
photoexcitation of this complex could easily reduce BrCF CO Et
2
2
ꢁ
II
to give the CF CO Et radical and Cu complex. The ligand
2
2
ꢀ
exchange between CN and the Br ligand generates the
II
ꢁ
2 2 2
complex. The addition of the CF CO Et radical to
LCu (CN)
a double bond provides an alkyl radical. The interaction of the
II
alkyl radical with the Cu (CN)
product and releases the catalyst. As we have described
before, a Cu complex is essential for the transfer of a CN group
to the alkyl radical. Therefore, the Cu catalyst plays a bifunctional
role in this transformation. It is not only a photocatalyst, but also
2
complex furnishes the final
2589–2598; ( f ) C. F. Meyer, S. M. Hell, A. Misale, A. A. Trabanco and
V. Gouverneur, Angew. Chem., Int. Ed., 2019, 58, 8829–8833.
5 (a) P. Anbarasan, T. Schareina and M. Beller, Chem. Soc. Rev., 2011, 40,
15
5
049–5067; (b) T. Wang and N. Jiao, Acc. Chem. Res., 2014, 47, 1137–1145;
(c) N. Kurono and T. Ohkuma, ACS Catal., 2016, 6, 989–1023; (d) J. Cui,
J. Song, Q. Liu, H. Liu and Y. Dong, Chem. – Asian J., 2018, 13, 482–495;
(e) T. Najam, S. S. A. Shah, K. Mehmood, A. U. Din, S. Rizwan, M. Ashfaq,
S. Shaheen and A. Waseem, Inorg. Chim. Acta, 2018, 469, 408–423.
N. O. Ilchenko, P. G. Janson and K. J. Szabo, J. Org. Chem., 2013, 78,
a coupling catalyst for C–CN bond formation.
ꢀ
Since CN and CF
2
groups are both incorporated under mild
6
conditions, this cyanodifluoromethylation protocol may find
potential applications in the synthesis of unique molecules.
To further demonstrate the synthetic utility of the protocol,
diversification of product 4a was performed (Scheme 5). Both
CN and CF CO Et could be easily transformed, and various
11087–11091.
7 Y.-T. He, L.-H. Li, Y.-F. Yang, Z.-Z. Zhou, H.-L. Hua, X.-Y. Liu and
Y.-M. Liang, Org. Lett., 2014, 16, 270–273.
8
(a) Z. Liang, F. Wang, P. Chen and G. Liu, J. Fluorine Chem., 2014,
67, 55–60; (b) F. Wang, D. Wang, X. Wan, L. Wu, P. Chen and
1
G. Liu, J. Am. Chem. Soc., 2016, 138, 15547–15550.
(a) Y. Zhu, J. Tian, X. Gu and Y. Wang, J. Org. Chem., 2018, 83,
2
2
9
fluorinated compounds were obtained, such as amino alcohols
7c) and cyano alcohols (7c).
In summary, we have described a difluorocarbene-based
cyanodifluoromethylation of alkenes catalyzed by a dual-
1
3267–13275; (b) Q. Guo, M. Wang, Y. Wang, Z. Xu and R. Wang, Chem.
(
Commun., 2017, 53, 12317–12320; (c) Q. Guo, M. Wang, Q. Peng, Y. Huo,
Q. Liu, R. Wang and Z. Xu, ACS Catal., 2019, 9, 4470–4476; (d) M. Israr,
H. Xiong, Y. Li and H. Bao, Adv. Synth. Catal., 2020, 362, 2211–2215.
1
1
0 R. Ren, Z. Wu, L. Huan and C. Zhu, Adv. Synth. Catal., 2017, 359, 3052–3056.
1 (a) C. Ni and J. Hu, Synthesis, 2014, 842–863; (b) A. D. Dilman and
V. V. Levin, Acc. Chem. Res., 2018, 51, 1272–1280; (c) W. Zhang and
Y. Wang, Tetrahedron Lett., 2018, 59, 1301–1308; (d) J.-H. Lin and
J.-C. Xiao, Acc. Chem. Res., 2020, 53, 1498–1510.
ꢁ
functional Cu-catalyst. BrCF
2
CO
2
Et is not only the CF
2
CO
2
Et
radical source, but also a difluorocarbene reagent, which
releases difluorocarbene to serve as the carbon source of the
nitrile group. No stoichiometric toxic cyanation reagent was
used, and a cheap Cu complex, playing a dual role, could
effectively promote this transformation. The Cu complex is
not only a photocatalyst, but also a catalyst for C–CN bond
formation. The cyanodifluoromethylation protocol may find
great utility in the synthesis of biologically active molecules.
We thank the National Natural Science Foundation
1
2 (a) F. Tian, V. Kruger, O. Bautista, J.-X. Duan, A.-R. Li, W. R. Dolbier,
Jr. and Q.-Y. Chen, Org. Lett., 2000, 2, 563–564; (b) W. Xu and
Q.-Y. Chen, Org. Biomol. Chem., 2003, 1, 1151–1156; (c) K. Oshiro,
Y. Morimoto and H. Amii, Synthesis, 2010, 2080–2084; (d) F. Wang,
T. Luo, J. Hu, Y. Wang, H. Krishnan, P. Jog, S. Ganesh, G. Prakash
and G. Olah, Angew. Chem., Int. Ed., 2011, 50, 7153–7157.
1
3 (a) L. Zhang, J. Zheng and J. Hu, J. Org. Chem., 2006, 71, 9845–9848;
(
b) J. Zheng, Y. Li, L. Zhang, J. Hu, G. J. Meuzelaar and H.-J. Federsel,
Chem. Commun., 2007, 5149–5151; (c) Q. Xie, Z. Zhu, L. Li, C. Ni and
J. Hu, Angew. Chem., Int. Ed., 2019, 58, 6405–6410.
4 (a) X.-Y. Deng, J.-H. Lin and J.-C. Xiao, Org. Lett., 2016, 18,
(
21971252 and 21991122), the Key Research Program of
Frontier Sciences, Chinese Academy of Sciences (CAS)
QYZDJSSWSLH049), and the Youth Innovation Promotion
1
4384–4387; (b) Z. Feng, Q. Q. Min, X. P. Fu, L. An and X. Zhang,
(
Nat. Chem., 2017, 9, 918–923; (c) X.-P. Fu, X.-S. Xue, X.-Y. Zhang,
Y.-L. Xiao, S. Zhang, Y.-L. Guo, X. Leng, K. N. Houk and X. Zhang,
Nat. Chem., 2019, 11, 948–956; (d) Z.-W. Xu, W. Zhang, J.-H. Lin,
C. M. Jin and J.-C. Xiao, Chin. J. Chem., 2020, 38, 1647–1650.
5 M. Zhang, J.-H. Lin and J.-C. Xiao, Angew. Chem., Int. Ed., 2019, 58,
Association CAS (2019256).
1
1
Conflicts of interest
6079–6083.
6 J. He, C. Chen, G. C. Fu and J. C. Peters, ACS Catal., 2018, 8, 11741–11748.
The authors declare no competing financial interest.
17 X.-J. Tang and W. R. Dolbier, Angew. Chem., Int. Ed., 2015, 54, 4246–4249.
2652 | Chem. Commun., 2021, 57, 2649ꢀ2652
This journal is The Royal Society of Chemistry 2021