and 1 mM, respectively, for measurement of UV-Vis absorp-
tion and fluorescence emission spectra. The pH values were
adjusted by addition of 0.1 M HCl and then determined by a
pH-meter at 20 1C.
References
1 (a) A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M.
Huxley, C. P. McCoy, J. T. Rademacher and T. E. Rice, Chem.
Rev., 1997, 97, 1515; (b) J. Lin, Trends Anal. Chem., 2000, 19, 541;
(c) J. A. Ferguson, B. G. Healey, K. S. Bronk, S. M. Barnard and
D. R. Walt, Anal. Chim. Acta, 1997, 340, 123.
Syntheses
2 (a) V. G. Young, H. L. Quiring and A. G. Sykes, J. Am. Chem.
Soc., 1997, 119, 12477; (b) A. Safavi and H. Abdollahi, Anal. Chim.
Acta, 1998, 367, 167; (c) A. Lobnik, I. Oehme, I. Murkovic and O.
S. Wolfbes, Anal. Chim. Acta, 1998, 367, 159; (d) J. Lin and D. Liu,
Anal. Chim. Acta, 2000, 408, 49; (e) M. Cajlakovic, A. Lobnik and
T. Werner, Anal. Chim. Acta, 2002, 455, 207; (f) M. Elhabiri, O.
Siri, A. Sornosa-Tent, A.-M. Albrecht-Gary and P. Braunstein,
Chem.–Eur. J., 2004, 10, 134; (g) C.-G. Niu, G.-M. Zeng, L.-X.
Chen, G.-L. Shen and R.-Q. Yu, Analyst, 2004, 129, 20; (h) Z.
Wang, Y. Xing, H. Shao, P. Lu and W. P. Weber, Org. Lett., 2005,
7, 87; (i) K. M.-C. Wong, W.-S. Tang, X.-X. Lu, N. Zhu and V.
W.-W. Yam, Inorg. Chem., 2005, 44, 1492.
5-Methoxy-2-(2-pyridyl)thiazole (2-MPT). Picolinoyl chloride
hydrochloride (780 mg, 4.38 mmol) was dissolved in 5 mL dried
chloroform, then added slowly into a chloroform solution (10
mL) containing glycine methyl ester hydrochloride (550 mg,
4.38 mmol) and triethylamine (1.3 mL, 11 mmol) at 0 1C. After
stirring for 2 h, the solvent was removed under reduced pres-
sure. The resulting mixture was partitioned by water, extracted
with ethyl acetate (3 ꢃ 80 mL) and dried over Na2SO4. The
organic phase was condensed under reduced pressure, and
recrystallization from n-hexane and ethyl acetate provided the
desired amide as a white solid (731 mg, yield: 86%).
3 H. R. Kermis, Y. Kostov, P. Harms and G. Rao, Biotechnol. Prog.,
2002, 18, 1047.
4 (a) Molecular Fluorescence: Principles and Applications, ed. B.
Valeur, Wiley-VCH, Weinheim, 2002; (b) T. Gunnlaugsson, Tetra-
hedron Lett., 2001, 42, 8901; (c) G. T. Hanson, T. B. McAnaney, E.
S. Park, M. E. P. Rendell, D. K. Yarbrough, S. Chu, L. Xi, S. G.
Boxer, M. H. Monstrose and S. J. Remington, Biochemistry, 2002,
41, 15477; (d) T. B. McAnaney, E. S. Park, G. T. Hanson, S. J.
Remington and S. G. Boxer, Biochemistry, 2002, 41, 15489; (e) T.
The obtained amide (1.0 g, 5.15 mmol) and Lawesson’s
reagent (2.5 g, 6.18 mmol) were refluxed in dried toluene for
20 h under Ar atmosphere. The resulting slurry was poured
into a 10 M NaOH aqueous solution in an ice bath and
extracted with ethyl acetate. The organic layer was evaporated
under reduced pressure after being dried over Na2SO4. The
obtained oil was subjected to chromatography on silica gel
using CH2Cl2 and ethyl acetate as eluent, and after recrystalli-
zation from n-hexane and ethyl acetate 5-methoxy-2-(2-pyri-
dyl)thiazole was obtained as a white solid (525 mg, yield: 53%).
Mp: 46–47 1C. IR (KBr, cmꢀ1): 1531, 1490, 1455, 1439,
1419, 1252, 998, 779. 1H NMR (CDCl3, 200 MHz): d =
8.55–8.51 (m, 1H), 8.07–8.02 (m, 1H), 7.78–7.69 (m, 1H),
7.27–7.20 (m, 1H), 7.19 (s, 1H), 3.79 (s, 3H). 13C NMR
(CDCl3, 50 MHz): d = 165.4, 156.2, 151.7, 149.2, 123.7,
122.5, 118.4, 61.2. Calcd. for C9H8N2OS: 192.0357, HRMS
m/z: 192.0349. Anal. calcd for C9H8N2OS: C 56.23, H 4.19, N
14.57; found: C 56.38, H 4.23, N 14.36%.
Gunnlaugsson, J. P. Leonard, K. Senechal and A. J. Harte, J. Am.
´ ´
Chem. Soc., 2003, 125, 12062.
5 (a) S. Charier, O. Ruel, J.-B. Baudin, A. Alcor, J.-F. Allemand, A.
Meglio and L. Jullien, Angew. Chem., Int. Ed., 2004, 43, 4785; (b) S.
Charier, O. Ruel, J.-B. Baudin, D. Alcor, J.-F. Allemand, A.
Meglio, L. Jullien and B. Valeur, Chem.–Eur. J., 2006, 12, 1097.
6 J. V. Metzger, Thiazole and its Derivatives, Wiley-Interscience,
New York, 1979.
7 L. G. Lee, C. H. Chen and L. A. Chiu, Cytometry, 1986, 7, 508.
8 V. M. Sonpatki, M. R. Herbert, L. M. Sandvoss and A. J. Seed, J.
Org. Chem., 2001, 66, 7283.
9 W. R. Dawson and M. W. Windsor, J. Phys. Chem., 1968, 72,
3251.
10 O. Bossart, L. De Cola, S. Welter and G. Calzaferri, Chem.–Eur.
J., 2004, 10, 5771.
11 (a) E. Lippert, Z. Naturforsch., A: Astrophys. Phys. Phys. Chem.,
1955, 10, 541; (b) C. Reichardt, Solvents and Solvent Effects in
Organic Chemistry, Wiley-VCH, Weinheim, 2003.
5-Methoxy-2-(3-pyridyl)thiazole (3-MPT). Yield: 58%. Mp:
47–48 1C. IR (KBr, cmꢀ1): 1529, 1491, 1426, 1419, 1312, 1285,
1277, 1219, 961, 811. 1H NMR (CDCl3, 200 MHz): d =
9.03–9.02 (m, 1H), 8.62–8.59 (m, 1H), 8.13–8.09 (m, 1H),
7.39–7.33 (m, 1H), 7.19 (s, 1H), 3.99 (s, 3H). 13C-NMR
(CDCl3, 50 MHz): d = 164.6, 150.1, 147.4, 144.4, 154.0,
131.4, 124.7, 122.8, 61.7. Calcd for C9H8N2OS: 192.0357,
HRMS (m/z): 192.0358. Anal. calcd for C9H8N2OS: C 56.23,
H 4.19, N 14.57; found: C 56.48, H 4.29, N 14.12%.
12 D. Laage, W. H. Thompson, M. Blanchard-Desce and J. T. Hynes,
J. Phys. Chem. A, 2003, 107, 6032.
13 (a) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A.
Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N.
Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V.
Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A.
Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R.
Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O.
Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian,
J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E.
Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J.
Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J.
J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M.
C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghava-
chari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford,
J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I.
Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C.
Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. G.
Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople,
GAUSSIAN 03 (Revision B.05), Gaussian, Inc., Pittsburgh, PA,
2003; (b) P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 270;
(c) P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 299; (d) W.
R. Wadt and P. J. Hay, J. Chem. Phys., 1985, 82, 284; (e) C. Lee, W.
Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 7.
5-Methoxy-2-(4-pyridyl)thiazole (4-MPT). Yield: 50%. Mp:
56–57 1C. IR (KBr, cmꢀ1): 1595, 1525, 1494, 1458, 1419, 1313,
1286, 1276, 1221, 988, 830, 818, 800. H NMR (CDCl3, 200
1
MHz): d = 8.66 (d, J = 5.8 Hz, 2H), 7.69 (d, J = 5.8 Hz, 2H),
7.23 (s, 1H), 4.00 (s, 3H). 13C NMR (CDCl3, 50 MHz): d =
164.9, 151.7, 150.1, 141.3, 123.0, 119.5, 61.6. Calcd for
C9H8N2OS: 192.0357, HRMS (m/z): 192.0358. Anal. calcd
for C9H8N2OS: C 56.23, H 4.19, N 14.57; found: C 56.40, H
3.91, N 14.28%.
14 For comparison, we also calculated the pKa* values of 5-(40-
methoxyphenyl)-2-(pyridyl)oxazole (2- and 4-PYMPO) with eqn.
(3) and found that our results (11.7 and 12.8 for 2- and 4-PYMPO,
respectively) were in good agreement to the reported values (11.6
and 12.7 for 2- and 4-PYMPO, respectively) given in ref. 5b.
Acknowledgements
The authors thank the NSFC (No. 20201009, 20221101,
20490210) for financial support.
ꢁc
This journal is the Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2006
1196 | New J. Chem., 2006, 30, 1192–1196