212
N.V. Kirij et al. / Journal of Fluorine Chemistry 94 (1999) 207±212
[(C6H5)3As(CF2H)]Br. Yield 30%, white microcrystal-
line solid.
acknowledged. N.V.K. and Yu.L.Ya. thank the Deutschen
Forschungsgemeinschaft, SVP thanks the Heinrich-Hertz-
Stiftung for grants.
19F-NMR [(CD3)2CO]: ꢀ(CF2H)
115.0 ppm, d,
2J(19F±1H)48 Hz, 1J(19F±13C)288 Hz, 1Á(12=13C±19F)
0.135 ppm.
1H-NMR [(CD3)2CO]: ꢀ(CF2H) 7.9 ppm, t, 2J(19F±1H)
48 Hz, 1H, ꢀ(C6H5) 7.6 ppm, overlapping multiplets, 15H.
13C{1H}-NMR [(CD3)2CO]: ꢀ(C-4) 137.0 ppm; ꢀ(C-2,6)
133.0 ppm; ꢀ(C-3,5) 131.0 ppm; ꢀ(CF2H) 117.0 ppm, t,
1J(19F±13C)288 Hz. C-1 was not observed due to line
broadening caused by the quadrupole resonance of the
arsenic nucleus.
References
[1] W. Tyrra, D. Naumann, J. Prakt. Chem. 338 (1996) 283.
È
[2] D. Naumann, R. Mockel, W. Tyrra, Angew. Chem., Int. Ed. Engl. 33
(1994) 323.
È
[3] R. Mockel, W. Tyrra, D. Naumann, J. Fluorine Chem. 73 (1995) 229.
[4] R. Eujen, B. Hoge, J. Organomet. Chem. 503 (1995) C51.
[5] L.J. Krause, J.A. Morrison, J. Am. Chem. Soc. 103 (1981) 2995.
[6] S.V. Pasenok, N.V. Kirij, Yu.L. Yagupolskii, D. Naumann, W. Tyrra,
A. Fitzner, Z. Anorg. Allg. Chem., in press.
MS (20 eV, 1608C): 306 (45%, [As(C6H5)3] ), 229 (10%,
[As(C6H5)2] ), 154 (10%, [AsBr] ), 152 (100%,
[7] W. Tyrra, D. Naumann, S.V. Pasenok, Yu.L. Yagupolskii, J. Fluorine
Chem. 70 (1995) 181.
[AsC6H5] ), 51 (20%, [CF2H] ).
The mass spectrometric breakdown pattern with the
exception of the ions 154 and 51 corresponds with that
for As(C6H5)3 [32].
[8] R. Miethchen, M. Hein, D. Naumann, W. Tyrra, Liebigs Ann. (1995)
1717.
[9] W. Tyrra, D. Naumann, Can. J. Chem. 69 (1991) 327.
[10] W. Tyrra, D. Naumann, Can. J. Chem. 67 (1989) 1949.
[11] R.A. Abramovitch, D.H.R. Barton, J.-P. Finet, Tetrahedron 44 (1988)
3039.
(C2H5)3Sb(CF2H)Br. Yield: traces; colourless solid.
19F-NMR[CH2Cl2]:ꢀ(CF2H) 115.1 ppm,d,2J(19F±1H)
48 Hz, 1J(19F±13C)282.5 Hz.
[12] J.-P. Finet, Chem. Rev. 89 (1989) 1487.
[13] A.O. Miller, G.G. Furin, Izv. Akad. Nauk, Ser. Khim. (1994) 171.
[14] A.O. Miller, G.G. Furin, Russ. Chem. Bull. 43 (1994) 168.
2
1H-NMR [CH2Cl2]: ꢀ(CF2H) 6.72 ppm, t, J(19F±1H)
48 Hz, ꢀ(CH2) 2.40 and 2.24 ppm, q, ꢀ(CH3) 1.40 and
1.37 ppm, t. A ®nal assignment could not be made due to
overlapping signals.
È È
[15] H.J. Frohn, S. Gorg, G. Henkel, M. Lage, Z. Anorg. Allg. Chem. 621
(1995) 1251.
[16] N. Herron, D.L. Thorn, R.L. Harlow, F. Davidson, J. Am. Chem. Soc.
115 (1993) 3028.
13C-NMR [CH2Cl2]: ꢀ(CF2H) 115.0 ppm, t, 1J(19F±13C)
283 Hz. The signals of the CH3CH2 groups are located
between 20 and 0 ppm but broadened and partially split due
to unsuccessful decoupling.
È
[17] W. Tyrra, Dissertation, Universitat Dortmund, 1989.
[18] D.J. Brauer, H. BuÈrger, M. Grunwald, G. Pawelke, J. Wilke, Z.
Anorg. Allg. Chem. 537 (1986) 63.
[19] R.Yu. Garlyauskajte, W. Tyrra, unpublished results.
[20] M.J. van Hamme, D.J. Burton, P.E. Greenlimb III, Org. Magn. Res.
11 (1978) 275.
MS (20 eV, 858C): 338 (1%, M ), 295 (10%, [Sb(C2H5)-
(CH3)(CF2H)Br] ), 280 (5%, [Sb(C2H5)(CF2H)Br] ), 259
(20%, [Sb(C2H5)3(CF2H)] ), 251 (60%, [Sb(CF2H)Br] ),
[21] R. Bartsch, O. Stelzer, R. Schmutzler, Z. Naturforsch. 36b (1981)
1349.
244
(100%,
[Sb(C2H5)(CH3)Br] ), 230
[Sb(C2H5)2(CF2H)] ), 215 (12%, [Sb(CH3)Br] ), 208
(40%,
[22] J.E. Huheey, Anorganische Chemie, Walter de Gruyter, Berlin, Aufl.,
1988, p. 222.
(11%, [Sb(C2H5)3] ), 201 (4%, [Sb(C2H5)(CF2H)] ), 179
[23] D. Naumann, W. Tyrra, B. Kock, W. Rudolph, B. Wilkes, J. Fluorine
Chem. 67 (1994) 91.
(61%, [Sb(C2H5)2] ), 150 (49%, [Sb(C2H5)] ), 121 (3%,
[Sb] ).
[24] W. Tyrra, D. Naumann, J. Organomet. Chem. 334 (1987) 323.
[25] D. Naumann, R. Schlengermann, W. Tyrra, J. Fluorine Chem. 66
(1994) 79.
[(C6H5)3Sb(CF2H)]Br. The yield was extremely low;
only the 19F-NMR spectrum could be recorded.
19F-NMR[CH2Cl2]:ꢀ(CF2H) 106.1 ppm,d,2J(19F±13C)
47 Hz, 1J(19F±13C)300 Hz.
[26] W. Steinkopf, J. MuÈller, Chem. Ber. 54 (1921) 841.
[27] W.J.C. Dyke, W.C. Davies, W.J. Jones, J. Chem. Soc. (1930) 463.
[28] A.D. Campbell, P.A. Dawson, Mikrochim. Acta (1983) 489.
[29] G. Jander, K.F. Jahr, H. Knoll, Maûanalyse, Walter deGruyter,
Berlin, 1973, p. 300.
[30] R. Pribil, Komplexone in der Chemischen Analyse, Verlag der
Wissenschaften, Berlin, 1961.
Acknowledgements
[31] G.A. Gray, J. Am. Chem. Soc. 95 (1973) 7736.
[32] C. Glidewell, J. Organomet. Chem. 116 (1976) 199.
Financial support by the Fonds der Chemischen Industrie,
the Deutsche Forschungsgemeinschaft (DFG) and the
Ukrainian Ministry of Science and Technology is gratefully