Page 5 of 6
Analytical Chemistry
(9) De Backer , D.; Biston , P.; Devriendt , J.; Madl , C.; Chochrad
probe will promote the physiological and pathological studies
of noradrenaline in brain.
, D.; Aldecoa , C.; Brasseur , A.; Defrance , P.; Gottignies , P.;
Vincent , J. L. Comparison of dopamine and norepinephrine in the
treatment of Shock. New Engl. J. Med. 2010, 362, 779-789.
(10) Pham, L.; Baker, M. R.; Shahanoor, Z.; Romeo, R. D.
Adolescent changes in hindbrain noradrenergic A2 neurons in male
rats. Brain Res. 2017, 1666, 11-16.
(11) Nakatsuka, N.; Andrews, A. M. Differentiating siblings: The
case of dopamine and norepinephrine. ACS Chem. Neurosci. 2017, 8,
218-220.
(12) Cieslak, P. E.; Llamosas, N.; Kos, T.; Ugedo, L.; Jastrzebska,
K.; Torrecilla, M.; Rodriguez Parkitna, J. The role of NMDA
receptor-dependent activity of noradrenergic neurons in attention,
impulsivity and exploratory behaviors. Genes Brain Behav. 2017, 16,
812-822.
(13) Bucci, D.; Busceti, C. L.; Calierno, M. T.; Di Pietro, P.;
Madonna, M.; Biagioni, F.; Ryskalin, L.; Limanaqi, F.; Nicoletti, F.;
Fornai, F. Systematic morphometry of catecholamine nuclei in the
brainstem. Front. Neuroanat. 2017, 11, 98.
(14) Muller, A.; Joseph, V.; Slesinger, P. A.; Kleinfeld, D. Cell-
based reporters reveal in vivo dynamics of dopamine and
norepinephrine release in murine cortex. Nat. Methods 2014, 11,
1245-1252.
(15) Gubernator, N. G.; Zhang, H.; Staal, R. G.; Mosharov, E. V.;
Pereira, D. B.; Yue, M.; Balsanek, V.; Vadola, P. A.; Mukherjee, B.;
Edwards, R. H.; Sulzer, D.; Sames, D. Fluorescent false
neurotransmitters visualize dopamine release from individual
presynaptic terminals. Science 2009, 324, 1441-1444.
(16) Hu, G.; Henke, A.; Karpowicz, R. J., Jr.; Sonders, M. S.;
Farrimond, F.; Edwards, R.; Sulzer, D.; Sames, D. New fluorescent
substrate enables quantitative and high-throughput examination of
vesicular monoamine transporter 2 (VMAT2). ACS Chem. Biol. 2013,
8, 1947-1954.
1
2
3
4
5
6
7
8
AUTHOR INFORMATION
Corresponding Author
ORCID
Caixia Yin: 0000-0001-5548-6333
9
Notes
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
There are no conflicts to declare.
ACKNOWLEDGMENT
We thank the National Natural Science Foundation of China (No.
21672131, 21775096, 21705102), Talents Support Program of
Shanxi Province (2014401), Shanxi Province Foundation for
Returness (2017-026) and Scientific Instrument Center of Shanxi
University.
ASSOCIATED CONTENT
Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website.
Synthesis of probes and the structure characterizations,
additional fluorescence and UV-vis spectra, and additional
fluorescence images (PDF)
REFERENCES
(17) Rodriguez, P. C.; Pereira, D. B.; Borgkvist, A.; Wong, M. Y.;
Barnard, C.; Sonders, M. S.; Zhang, H.; Sames, D.; Sulzer, D.
Fluorescent dopamine tracer resolves individual dopaminergic
synapses and their activity in the brain. P. Nati. Acad. Sci. USA 2013,
110, 870-875.
(18) Pereira, D. B.; Schmitz, Y.; Meszaros, J.; Merchant, P.; Hu,
G.; Li, S.; Henke, A.; Lizardi-Ortiz, J. E.; Karpowicz, R. J., Jr.;
Morgenstern, T. J.; Sonders, M. S.; Kanter, E.; Rodriguez, P. C.;
Mosharov, E. V.; Sames, D.; Sulzer, D. Fluorescent false
neurotransmitter reveals functionally silent dopamine vesicle clusters
in the striatum. Nat. Neurosci. 2016, 19, 578-586.
(19) Dunn, M.; Henke, A.; Clark, S.; Kovalyova, Y.; Kempadoo,
K. A.; Karpowicz, R. J., Jr.; Kandel, E. R.; Sulzer, D.; Sames, D.
Designing a norepinephrine optical tracer for imaging individual
noradrenergic synapses and their activity in vivo. Nat. Commun.
2018, 9, 2838.
(20) Hettie, K. S.; Liu, X.; Gillis, K. D.; Glass, T. E. Selective
catecholamine recognition with NeuroSensor 521: a fluorescent
sensor for the visualization of norepinephrine in fixed and live cells.
ACS Chem. Neurosci. 2013, 4, 918-923.
(21) Hettie, K. S.; Glass, T. E. Turn-on near-infrared fluorescent
sensor for selectively imaging serotonin. ACS Chem. Neurosci. 2016,
7, 21-25.
(22) Hettie, K. S.; Glass, T. E. Coumarin-3-aldehyde as a scaffold
for the design of tunable PET-modulated fluorescent sensors for
neurotransmitters. Chem. Eur. J. 2014, 20, 17488-17499.
(23) Hettie, K. S.; Klockow, J. L.; Glass, T. E. Three-input logic
gates with potential applications for neuronal imaging. J. Am. Chem.
Soc. 2014, 136, 4877-4880.
(24) Feuster, E. K.; Glass, T. E. Detection of amines and
unprotected amino acids in aqueous conditions by formation of highly
fluorescent iminium ions. J. Am. Chem. Soc. 2003, 125, 16174-16175.
(25) Niu, L. Y.; Guan, Y. S.; Chen, Y. Z.; Wu, L. Z.; Tung, C. H.;
Yang, Q. Z. BODIPY-based ratiometric fluorescent sensor for highly
selective detection of glutathione over cysteine and homocysteine. J.
Am. Chem. Soc. 2012, 134, 18928-18931.
(1) Sara, S. J. The locus coeruleus and noradrenergic modulation of
cognition. Nat. Rev. Neurosci. 2009, 10, 211-223.
(2) Rinaman, L. Hindbrain noradrenergic A2 neurons: diverse roles
in autonomic, endocrine, cognitive, and behavioral functions. Am. J.
Physiol. Reg. I. 2011, 300, R222-235.
(3) Armstrong, D. M.; Ross, C. A.; Pickel, V. M.; Joh, T. H.; Reis,
D. J. Distribution of dopamine-, noradrenaline-, and adrenaline-
containing cell bodies in the rat medulla oblongata: demonstrated by
the immunocytochemical localization of catecholamine biosynthetic
enzymes. J. Comp. Neurol. 1982, 212, 173-187.
(4) Lee, M.; Gubernator, N. G.; Sulzer, D.; Sames, D.
Development of pH-responsive fluorescent false neurotransmitters. J.
Am. Chem. Soc. 2010, 132, 8828-8830.
(5) Bundzikova-Osacka, J.; Ghosal, S.; Packard, B. A.; Ulrich-Lai,
Y. M.; Herman, J. P. Role of nucleus of the solitary tract
noradrenergic neurons in post-stress cardiovascular and hormonal
control in male rats. Stress 2015, 18, 221-232.
(6) Dreyfus, N.; Myers, J. K.; Badescu, V. O.; de Frutos, O.; de la
Puente, M. L.; Ding, C.; Filla, S. A.; Fynboe, K.; Gernert, D. L.;
Heinz, B. A.; Hemrick-Luecke, S. K.; Johnson, K. W.; Johnson, M.
P.; Lopez, P.; Love, P. L.; Martin, L. J.; Masquelin, T.; McCoy, M. J.;
Mendiola, J.; Morrow, D.; Muhlhauser, M.; Pascual, G.; Perun, T. J.;
Pfeifer, L. A.; Phebus, L. A.; Richards, S. J.; Rincon, J. A.; Seest, E.
P.; Shah, J.; Shaojuan, J.; Simmons, R. M.; Stephenson, G. A.;
Tromiczak, E. G.; Thompson, L. K.; Walter, M. W.; Weber, W. W.;
Zarrinmayeh, H.; Thomas, C. E.; Joshi, E.; Iyengar, S.; Johansson, A.
M. Discovery of a potent, dual serotonin and norepinephrine reuptake
inhibitor. ACS Med. Chem. Lett. 2013, 4, 560-564.
(7) aan het Rot, M.; Mathew, S. J.; Charney, D. S. Neurobiological
mechanisms in major depressive disorder. Can. Med. Assoc. J. 2009,
180, 305-313.
(8) Russell, J. A.; Walley, K. R.; Singer, J.; Gordon, A. C.; Hebert,
P. C.; Cooper, D. J.; Holmes, C. L.; Mehta, S.; Granton, J. T.; Storms,
M. M.; Cook, D. J.; Presneill, J. J.; Ayers, D.; Investigators, V.
Vasopressin versus norepinephrine infusion in patients with septic
shock. The New Engl. J. Med. 2008, 358, 877-887.
(26) Liu, J.; Sun, Y. Q.; Huo, Y.; Zhang, H.; Wang, L.; Zhang, P.;
Song, D.; Shi, Y.; Guo, W. Simultaneous fluorescence sensing of Cys
ACS Paragon Plus Environment