Please do not adjust margins
RSC Advances
DOI: 10.1039/C6RA14625B
ARTICLE
Journal Name
L.; Yang, B., Noble-metal catalyzed hydrodeoxygenation of
biomass-derived lignin to aromatic hydrocarbons. Green
Chemistry 2014, 16 (2), 897.
9
9. Furimsky, E., Catalytic hydrodeoxygenation. Applied
Catalysis A: General 2000, 199, 147-190.
10 10. (a) Lee, J.; Kim, Y. T.; Huber, G. W., Aqueous-phase
2
2. (a) Serrano-Ruiz, J. C.; Luque, R.; Sepulveda-Escribano, A., hydrogenation and hydrodeoxygenation of biomass-derived
Transformations of biomass-derived platform molecules: from
high added-value chemicals to fuels via aqueous-phase
processing. Chemical Society reviews 2011, 40 (11), 5266-81; (b)
Ruppert, A. M.; Weinberg, K.; Palkovits, R., Hydrogenolysis goes
bio: from carbohydrates and sugar alcohols to platform
chemicals. Angewandte Chemie 2012, 51 (11), 2564-601.
oxygenates with bimetallic catalysts. Green Chemistry 2014, 16
(2), 708; (b) Yuan, P.; Liu, Z.; Zhang, W.; Sun, H.; Liu, S., Cu-
Zn/Al2O3 Catalyst for the Hydrogenation of Esters to Alcohols.
Chinese Journal of Catalysis 2010, 31 (7), 769-775; (c) Jason M.
Nichols; Lee M. Bishop; Robert G. Bergman; Ellman, J. A.,
Catalytic C-O Bond Cleavage of 2-Aryloxy-1-arylethanols and Its
Application. Journal of the American Chemical Society 2010, 132,
12554-12555; (d) He, L.; Cheng, H.; Liang, G.; Yu, Y.; Zhao, F.,
Effect of structure of CuO/ZnO/Al2O3 composites on catalytic
performance for hydrogenation of fatty acid ester. Applied
Catalysis A: General 2013, 452, 88-93; (e) Maligal-Ganesh, R. V.;
Xiao, C.; Goh, T. W.; Wang, L.-L.; Gustafson, J.; Pei, Y.; Qi, Z.;
3
3. Bozell, J. J.; Petersen, G. R., Technology development for
the production of biobased products from biorefinery
carbohydrates—the US Department of Energy’s “Top 10”
revisited. Green Chemistry 2010, 12 (4), 539.
4
4. (a) Corma, A.; de la Torre, O.; Renz, M., High-quality
diesel from hexose- and pentose-derived biomass platform
molecules. ChemSusChem 2011, 4 (11), 1574-7; (b) Xin, J.; Zhang, Johnson, D. D.; Zhang, S.; Tao, F.; Huang, W., A Ship-in-a-Bottle
S.; Yan, D.; Ayodele, O.; Lu, X.; Wang, J., Formation of C–C bonds
for the production of bio-alkanes under mild conditions. Green
Chemistry 2014, 16 (7), 3589; (c) Mascal, M.; Dutta, S.;
Strategy To Synthesize Encapsulated Intermetallic Nanoparticle
Catalysts: Exemplified for Furfural Hydrogenation. ACS Catalysis
2016, 6 (3), 1754-1763.
Gandarias, I., Hydrodeoxygenation of the angelica lactone dimer, 11 11. Ayodele, O. O.; Dawodu, F. A.; Yan, D.; Lu, X.; Xin, J.;
a cellulose-based feedstock: simple, high-yield synthesis of
branched C7 -C10 gasoline-like hydrocarbons. Angewandte
Chemie 2014, 53 (7), 1854-7.
Zhang, S., Hydrodeoxygenation of angelica lactone dimers and
trimers over silica-alumina supported nickel catalyst. Renewable
Energy 2016, 86, 943-948.
5
5. (a) Chheda, J. N.; Roman-Leshkov, Y.; Dumesic, J. A.,
12 12. (a) G. W. Huber; Shabaker, J. W.; Dumesic, J. A., Raney
Ni-Sn Catalyst for H2 Production from Biomass-Derived
Hydrocarbons. SCIENCE 2003, 300, 2075-2077; (b) Perosa, A.;
Tundo, P., Selective Hydrogenolysis of Glycerol with Raney
Nickel. Ind. Eng. Chem. Res. 2005, 44, 8535-8537.
Production of 5-hydroxymethylfurfural and furfural by
dehydration of biomass-derived mono- and poly-saccharides.
Green Chemistry 2007, 9 (4), 342; (b) Lange, J. P.; van der Heide,
E.; van Buijtenen, J.; Price, R., Furfural--a promising platform for
lignocellulosic biofuels. ChemSusChem 2012, 5 (1), 150-66; (c)
Wang, H.; Deng, T.; Wang, Y.; Cui, X.; Qi, Y.; Mu, X.; Hou, X.; Zhu,
Y., Graphene oxide as a facile acid catalyst for the one-pot
conversion of carbohydrates into 5-ethoxymethylfurfural. Green
Chemistry 2013, 15 (9), 2379.
13 13. (a) Botas, J. A.; Serrano, D. P.; García, A.; de Vicente, J.;
Ramos, R., Catalytic conversion of rapeseed oil into raw
chemicals and fuels over Ni- and Mo-modified nanocrystalline
ZSM-5 zeolite. Catalysis Today 2012, 195 (1), 59-70; (b)
Sankaranarayanan, T. M.; Berenguer, A.; Ochoa-Hernández, C.;
Moreno, I.; Jana, P.; Coronado, J. M.; Serrano, D. P.; Pizarro, P.,
Hydrodeoxygenation of anisole as bio-oil model compound over
supported Ni and Co catalysts: Effect of metal and support
properties. Catalysis Today 2015, 243, 163-172.
6
6. (a) Espinal Viguri, M.; Huertos, M. A.; Perez, J.; Riera, L.;
Ara, I., Re-mediated C-C coupling of pyridines and imidazoles.
Journal of the American Chemical Society 2012, 134 (50), 20326-
9
; (b) Monreal, M. J.; L., P.; Diaconescu, Reversible C-C Coupling
in a Uranium Biheterocyclic Complex. Journal of the American
Chemical Society 2010, 132, 7676-7683.
14 14. Pisarek, M.; Lukaszewski, M.; Winiarek, P.; Kedzierzawski,
P.; Janikczachor, M., Influence of Cr addition to Raney Ni catalyst
7
7. Tushar P. Vispute; Huiyan Zhang; Aimaro Sanna; Rui Xiao; on hydrogenation of isophorone. Catalysis Communications
Huber, G. W., Renewable Chemical Commodity Feedstocks from
2008, 10 (2), 213-216.
Integrated Catalytic Processing of Pyrolysis Oils. science 2010,
15 15. (a) Perrard, A.; Gallezot, P.; Joly, J.-P.; Durand, R.; Baljou,
C.; Coq, B.; Trens, P., Highly efficient metal catalysts supported
on activated carbon cloths: A catalytic application for the
hydrogenation of d-glucose to d-sorbitol. Applied Catalysis A:
General 2007, 331, 100-104; (b) HOFMANN, H.; DipLChem; BILL,
W., Geschwindigkeitsbestirnrnende Faktoren bei Reaktionen mit
suspendiertem Kontakt. Chemie Ing Techn. 1959, 31 (2), 81-88;
(c) Wlsnlak, J.; Alfandary, P., Sperm Whale Oil Replacements
from Halogenation of Jojoba Oil. Ind. Eng. Chem. Prod. Res. Dev.
1979, 18 (4), 358-364.
3
30, 1222-1227.
8
8. (a) Xiao, C.; Goh, T.-W.; Qi, Z.; Goes, S.; Brashler, K.;
Perez, C.; Huang, W., Conversion of Levulinic Acid to γ-
Valerolactone over Few-Layer Graphene-Supported Ruthenium
Catalysts. ACS Catalysis 2016, 6 (2), 593-599; (b) Tan, J.; Cui, J.;
Ding, G.; Deng, T.; Zhu, Y.; Li, Y.-w., Efficient aqueous
hydrogenation of levulinic acid to γ-valerolactone over a highly
active and stable ruthenium catalyst. Catal. Sci. Technol. 2016,
5), 1469-1475; (c) Wettstein, S. G.; Bond, J. Q.; Alonso, D. M.;
6
(
Pham, H. N.; Datye, A. K.; Dumesic, J. A., RuSn bimetallic
catalysts for selective hydrogenation of levulinic acid to γ-
16 16. Al-Shaal, M. G.; Ciptonugroho, W.; Holzhäuser, F. J.;
Mensah, J. B.; Hausoul, P. J. C.; Palkovits, R., Catalytic upgrading
valerolactone. Applied Catalysis B: Environmental 2012, 117-118, of α-angelica lactone to levulinic acid esters under mild
3
21-329.
conditions over heterogeneous catalysts. Catal. Sci. Technol.
015, 5 (12), 5168-5173.
2
6
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins